메뉴 건너뛰기




Volumn 71, Issue 5, 2009, Pages 971-992

A hierarchical eigenmodel for pooled covariance estimation

Author keywords

Bayesian inference; Copula; Markov chain Monte Carlo methods; Principal components; Random matrix; Stiefel manifold

Indexed keywords


EID: 70350087511     PISSN: 13697412     EISSN: 14679868     Source Type: Journal    
DOI: 10.1111/j.1467-9868.2009.00716.x     Document Type: Article
Times cited : (42)

References (21)
  • 1
    • 0038532237 scopus 로고
    • An asymptotic expansion for the distribution of the latent roots of the estimated covariance matrix
    • Anderson, G. A. (1965) An asymptotic expansion for the distribution of the latent roots of the estimated covariance matrix. Ann. Math. Statist., 36, 1153 1173.
    • (1965) Ann. Math. Statist. , vol.36 , pp. 1153-1173
    • Anderson, G.A.1
  • 2
    • 0001199893 scopus 로고
    • An antipodally symmetric distribution on the sphere
    • Bingham, C. (1974) An antipodally symmetric distribution on the sphere. Ann. Statist., 2, 1201 1225.
    • (1974) Ann. Statist. , vol.2 , pp. 1201-1225
    • Bingham, C.1
  • 3
    • 3843082641 scopus 로고    scopus 로고
    • Spectral models for covariance matrices
    • Boik, R. J. (2002) Spectral models for covariance matrices. Biometrika, 89, 159-182.
    • (2002) Biometrika , vol.89 , pp. 159-182
    • Boik, R.J.1
  • 5
    • 0016962096 scopus 로고
    • Asymptotic distributions of the latent roots of the covariance matrix with multiple population roots
    • Chikuse, Y. (1976) Asymptotic distributions of the latent roots of the covariance matrix with multiple population roots. J. Multiv. Anal., 6, 237-249.
    • (1976) J. Multiv. Anal. , vol.6 , pp. 237-249
    • Chikuse, Y.1
  • 6
    • 0016999080 scopus 로고
    • Asymptotic expansions for distributions of latent roots in multivariate analysis
    • Constantine, A. G. Muirhead, R. J. (1976) Asymptotic expansions for distributions of latent roots in multivariate analysis. J. Multiv. Anal., 6, 369-391.
    • (1976) J. Multiv. Anal. , vol.6 , pp. 369-391
    • Constantine, A.G.1    Muirhead, R.J.2
  • 7
    • 0000643180 scopus 로고
    • Common principal components in k groups
    • Flury, B. N. (1984) Common principal components in k groups. J. Am. Statist. Ass., 79, 892-898.
    • (1984) J. Am. Statist. Ass. , vol.79 , pp. 892-898
    • Flury, B.N.1
  • 8
    • 0003373430 scopus 로고
    • Two generalizations of the common principal component model
    • Flury, B. K. (1987) Two generalizations of the common principal component model. Biometrika, 74, 59 69.
    • (1987) Biometrika , vol.74 , pp. 59-69
    • Flury, B.K.1
  • 11
    • 0000202526 scopus 로고
    • Bessel functions of matrix argument
    • Herz, C. S. (1955) Bessel functions of matrix argument. Ann. Math., 61, 474-523.
    • (1955) Ann. Math. , vol.61 , pp. 474-523
    • Herz, C.S.1
  • 12
    • 70350094856 scopus 로고    scopus 로고
    • Simulation of the matrix Bingham-von Mises-Fisher distribution, with applications to multivariate and relational data
    • to be published.
    • Hoff, P. D. (2007a) Simulation of the matrix Bingham-von Mises-Fisher distribution, with applications to multivariate and relational data. J. Computnl Graph. Statist., to be published.
    • (2007) J. Computnl Graph. Statist.
    • Hoff, P.D.1
  • 13
    • 34250740312 scopus 로고    scopus 로고
    • Model averaging and dimension selection for the singular value decomposition
    • Hoff, P. D. (2007b) Model averaging and dimension selection for the singular value decomposition. J. Am. Statist. Ass., 102, 674-685.
    • (2007) J. Am. Statist. Ass. , vol.102 , pp. 674-685
    • Hoff, P.D.1
  • 14
    • 0002959565 scopus 로고
    • The von Mises-Fisher matrix distribution in orientation statistics
    • Khatri, C. G. Mardia, K. V. (1977) The von Mises-Fisher matrix distribution in orientation statistics. J. R. Statist. Soc. B, 39, 95 106.
    • (1977) J. R. Statist. Soc. B , vol.39 , pp. 95-106
    • Khatri, C.G.1    Mardia, K.V.2
  • 15
    • 33646424751 scopus 로고    scopus 로고
    • The efficient evaluation of the hypergeometric function of a matrix argument
    • Koev, P. Edelman, A. (2006) The efficient evaluation of the hypergeometric function of a matrix argument. Math. Computn, 75, 833-846.
    • (2006) Math. Computn , vol.75 , pp. 833-846
    • Koev, P.1    Edelman, A.2
  • 17
    • 0013183612 scopus 로고
    • Latent roots and matrix variates: A review of some asymptotic results
    • Muirhead, R. J. (1978) Latent roots and matrix variates: a review of some asymptotic results. Ann. Statist., 6, 5 33.
    • (1978) Ann. Statist. , vol.6 , pp. 5-33
    • Muirhead, R.J.1
  • 18
    • 0007090002 scopus 로고
    • Some tests for common principal component subspaces in several groups
    • Schott, J. R. (1991) Some tests for common principal component subspaces in several groups. Biometrika, 78, 771-777.
    • (1991) Biometrika , vol.78 , pp. 771-777
    • Schott, J.R.1
  • 19
    • 3843142518 scopus 로고    scopus 로고
    • Partial common principal component subspaces
    • Schott, J. R. (1999) Partial common principal component subspaces. Biometrika, 86, 899-908.
    • (1999) Biometrika , vol.86 , pp. 899-908
    • Schott, J.R.1
  • 20
    • 18644379273 scopus 로고    scopus 로고
    • Distribution of eigenvalues and eigenvectors of Wishart matrix when the population eigenvalues are infinitely dispersed and its application to minimax estimation of covariance matrix
    • Takemura, A. Sheena, Y. (2005) Distribution of eigenvalues and eigenvectors of Wishart matrix when the population eigenvalues are infinitely dispersed and its application to minimax estimation of covariance matrix. J. Multiv. Anal., 94, 271-299.
    • (2005) J. Multiv. Anal. , vol.94 , pp. 271-299
    • Takemura, A.1    Sheena, Y.2
  • 21
    • 84950871099 scopus 로고
    • Accurate approximations for posterior moments and marginal densities
    • Tierney, L. Kadane, J. B. (1986) Accurate approximations for posterior moments and marginal densities. J. Am. Statist. Ass., 81, 82 86.
    • (1986) J. Am. Statist. Ass. , vol.81 , pp. 82-86
    • Tierney, L.1    Kadane, J.B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.