메뉴 건너뛰기




Volumn 87, Issue 2, 2000, Pages 425-435

Maximum likelihood estimation of generalised linear models for multivariate normal covariance matrix

Author keywords

Asymptotic normality; Cholesky decomposition; Fisher information; Newton Raphson algorithm; Unconstrained parameterisation; Variable selection and diagnostics

Indexed keywords


EID: 0001304198     PISSN: 00063444     EISSN: None     Source Type: Journal    
DOI: 10.1093/biomet/87.2.425     Document Type: Article
Times cited : (209)

References (15)
  • 1
    • 0002464001 scopus 로고    scopus 로고
    • Integrated likelihood methods for eliminating nuisance parameters
    • BERGER, O. J., LISEO, B. & WOLPERT, R. (1999). Integrated likelihood methods for eliminating nuisance parameters (with Discussion). Statist. Sci. 14, 1-28.
    • (1999) Statist. Sci. , vol.14 , pp. 1-28
    • Berger, O.J.1    Liseo, B.2    Wolpert, R.3
  • 2
    • 0001827933 scopus 로고
    • Inference for a covariance matrix
    • Ed. P. R. Freeman and A. F. M. Smith, Chichester: John Wiley
    • BROWN, P. J., LE, N. D. & ZIDEK, J. V. (1994). Inference for a covariance matrix. In Aspects of Uncertainty, Ed. P. R. Freeman and A. F. M. Smith, pp. 77-90. Chichester: John Wiley.
    • (1994) Aspects of Uncertainty , pp. 77-90
    • Brown, P.J.1    Le, N.D.2    Zidek, J.V.3
  • 6
    • 0023563816 scopus 로고
    • A method for comparing profiles of repeated measurements
    • KENWARD, M. G. (1987). A method for comparing profiles of repeated measurements. Appl. Statist. 36, 296-308.
    • (1987) Appl. Statist. , vol.36 , pp. 296-308
    • Kenward, M.G.1
  • 7
    • 0042113387 scopus 로고
    • Comments on 'A simple predictive density function' by M. Lejeune and G. D. Faulkenberry
    • LEONARD, T. (1982). Comments on 'A simple predictive density function' by M. Lejeune and G. D. Faulkenberry. J. Am. Statist. Assoc. 77, 657-8.
    • (1982) J. Am. Statist. Assoc. , vol.77 , pp. 657-658
    • Leonard, T.1
  • 8
    • 21144471428 scopus 로고
    • Bayesian inference for a covariance matrix
    • LEONARD, T. & HSU, J. S. J. (1992). Bayesian inference for a covariance matrix. Ann. Statist. 20, 1669-96.
    • (1992) Ann. Statist. , vol.20 , pp. 1669-1696
    • Leonard, T.1    Hsu, J.S.J.2
  • 10
    • 21444460810 scopus 로고    scopus 로고
    • Unconstrained parametrizations for variance-covariance matrices
    • PINHEIRO, J. D. & BATES, D. M. (1996). Unconstrained parametrizations for variance-covariance matrices. Statist. Comp. 6, 289-96.
    • (1996) Statist. Comp. , vol.6 , pp. 289-296
    • Pinheiro, J.D.1    Bates, D.M.2
  • 11
    • 0012806293 scopus 로고    scopus 로고
    • Joint mean-covariance models with applications to longitudinal data: Unconstrained parameterisation
    • POURAHMADI, M. (1999). Joint mean-covariance models with applications to longitudinal data: Unconstrained parameterisation. Biometrika 86, 677-90.
    • (1999) Biometrika , vol.86 , pp. 677-690
    • Pourahmadi, M.1
  • 12
    • 0001833787 scopus 로고
    • Generalized linear models with varying dispersion
    • SMYTH, G. K. (1989). Generalized linear models with varying dispersion. J. R Statist. Soc. B 51, 47-60.
    • (1989) J. R Statist. Soc. B , vol.51 , pp. 47-60
    • Smyth, G.K.1
  • 14
    • 0001769774 scopus 로고
    • Modelling variance heterogeneity: Residual maximum likelihood and diagnostics
    • VERBYLA, A. P. (1993). Modelling variance heterogeneity: Residual maximum likelihood and diagnostics. J. R. Statist. Soc. B 55, 493-508.
    • (1993) J. R. Statist. Soc. B , vol.55 , pp. 493-508
    • Verbyla, A.P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.