-
1
-
-
78650005927
-
Phase change memory
-
Dec
-
P. H. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Rajendran, M. Asheghi, and K. E. Goodson, "Phase change memory," Proc. IEEE, vol. 98, no. 12, pp. 2201-2227, Dec. 2010.
-
(2010)
Proc. IEEE
, vol.98
, Issue.12
, pp. 2201-2227
-
-
Wong, P.H.1
Raoux, S.2
Kim, S.3
Liang, J.4
Reifenberg, J.P.5
Rajendran, B.6
Asheghi, M.7
Goodson, K.E.8
-
2
-
-
77950580500
-
Phase change memory technology
-
Mar
-
G. W. Burr, M. J. Breitwisch, M. Franceschini, D. Garetto, K. Gopalakrishnan, B. Jackson, B. Kurdi, C. Lam, L. A. Lastras, A. Padilla, B. Rajendran, S. Raoux, and R. S. Shenoy, "Phase change memory technology," J. Vac. Sci. Technol. B, Microelectron. Nanometer Struct., vol. 28, no. 2, pp. 223-262, Mar. 2010.
-
(2010)
J. Vac. Sci. Technol. B, Microelectron. Nanometer Struct.
, vol.28
, Issue.2
, pp. 223-262
-
-
Burr, G.W.1
Breitwisch, M.J.2
Franceschini, M.3
Garetto, D.4
Gopalakrishnan, K.5
Jackson, B.6
Kurdi, B.7
Lam, C.8
Lastras, L.A.9
Padilla, A.10
Rajendran, B.11
Raoux, S.12
Shenoy, R.S.13
-
3
-
-
49149092253
-
Fast phase transitions induced by picosecond electrical pulses on phase change memory cells
-
Jul
-
W. J. Wang, L. P. Shi, R. Zhao, K. G. Lim, H. K. Lee, T. C. Chong, and Y. H. Wu, "Fast phase transitions induced by picosecond electrical pulses on phase change memory cells," Appl. Phys. Lett., vol. 93, no. 4, pp. 043 121-1-043 121-3, Jul. 2010.
-
(2010)
Appl. Phys. Lett.
, vol.93
, Issue.4
, pp. 0431211-0431213
-
-
Wang, W.J.1
Shi, L.P.2
Zhao, R.3
Lim, K.G.4
Lee, H.K.5
Chong, T.C.6
Wu, Y.H.7
-
4
-
-
48849101173
-
Chalcogenidenanowire-based phase change memory
-
Jul.
-
B. Yu, X. H. Sun, S. Ju, D. B. Janes, and M. Meyyappan, "Chalcogenidenanowire-based phase change memory," IEEE Trans. Nanotechnol., vol. 7, no. 4, pp. 496-502, Jul. 2008.
-
(2008)
IEEE Trans. Nanotechnol.
, vol.7
, Issue.4
, pp. 496-502
-
-
Yu, B.1
Sun, X.H.2
Ju, S.3
Janes, D.B.4
Meyyappan, M.5
-
5
-
-
34948907947
-
Highly scalable non-volatile and ultra-low-power phase-change nanowire memory
-
DOI 10.1038/nnano.2007.291, PII NNANO2007291
-
S. H. Lee, Y. Jung, and R. Agarwal, "Highly scalable non-volatile and ultra-low-power phase-change nanowire memory," Nat. Nanotechnol., vol. 2, no. 10, pp. 626-630, Oct. 2007. (Pubitemid 47525186)
-
(2007)
Nature Nanotechnology
, vol.2
, Issue.10
, pp. 626-630
-
-
Lee, S.-H.1
Jung, Y.2
Agarwal, R.3
-
6
-
-
16244410161
-
Low-cost and nanoscale non-volatile memory concept for future silicon chips
-
DOI 10.1038/nmat1350
-
M. Lankhorst, B. Ketelaars, and R. Wolters, "Low-cost and nanoscale non-volatile memory concept for future silicon chips," Nat. Mater., vol. 4, no. 4, pp. 347-352, Apr. 2005. (Pubitemid 40450216)
-
(2005)
Nature Materials
, vol.4
, Issue.4
, pp. 347-352
-
-
Lankhorst, M.H.R.1
Ketelaars, B.W.S.M.M.2
Wolters, R.A.M.3
-
7
-
-
61849099950
-
Minimum voltage for threshold switching in nanoscale phase change memory
-
Oct.
-
D. Yu, S. Brittman, and J. S. Lee, "Minimum voltage for threshold switching in nanoscale phase change memory," Nano. Lett., vol. 8, no. 10, pp. 3429-3433, Oct. 2008.
-
(2008)
Nano. Lett.
, vol.8
, Issue.10
, pp. 3429-3433
-
-
Yu, D.1
Brittman, S.2
Lee, J.S.3
-
8
-
-
61649092340
-
Void formation induced electrical switching in phase-change nanowires
-
Dec.
-
S. Meister, D. T. Schoen, M. A. Topinka, A. M. Minor, and Y. Cui, "Void formation induced electrical switching in phase-change nanowires," Nano. Lett., vol. 8, no. 12, pp. 4562-4567, Dec. 2008.
-
(2008)
Nano. Lett.
, vol.8
, Issue.12
, pp. 4562-4567
-
-
Meister, S.1
Schoen, D.T.2
Topinka, M.A.3
Minor, A.M.4
Cui, Y.5
-
9
-
-
56549118778
-
Germanium antimonide phase change nanowires for memory applications
-
Nov.
-
X. H. Sun, B. Yu, G. Ng, M. Meyyappan, S. Ju, and D. B. Janes, "Germanium antimonide phase change nanowires for memory applications," IEEE Trans. Electron Devices, vol. 55, no. 11, pp. 3131-3135, Nov. 2008.
-
(2008)
IEEE Trans. Electron Devices
, vol.55
, Issue.11
, pp. 3131-3135
-
-
Sun, X.H.1
Yu, B.2
Ng, G.3
Meyyappan, M.4
Ju, S.5
Janes, D.B.6
-
10
-
-
34547767049
-
Analysis of temperature in phase change memory scaling
-
DOI 10.1109/LED.2007.901347
-
S. Kim and H. P. Wong, "Analysis of temperature in phase change memory scaling," IEEE Electron Device Lett., vol. 28, no. 8, pp. 697-699, Aug. 2007. (Pubitemid 47242027)
-
(2007)
IEEE Electron Device Letters
, vol.28
, Issue.8
, pp. 697-699
-
-
Kim, S.B.1
Wong, H.-S.P.2
-
11
-
-
79955727689
-
Thermal conductivity anisotropy and grain structure in Ge2Sb2Te5 films
-
Apr
-
J. Lee, Z. Li, J. P. Reifenberg, S. Lee, R. Sinclair, M. Asheghi, and K. E. Goodson, "Thermal conductivity anisotropy and grain structure in Ge2Sb2Te5 films," J. Appl. Phys., vol. 109, no. 8, pp. 084 902-1-084 902-6, Apr. 2011.
-
(2011)
J. Appl. Phys.
, vol.109
, Issue.8
, pp. 0849021-0849026
-
-
Lee, J.1
Li, Z.2
Reifenberg, J.P.3
Lee, S.4
Sinclair, R.5
Asheghi, M.6
Goodson, K.E.7
-
12
-
-
0842331309
-
Scaling analysis of phase-change memory technology
-
A. Pirovano, A. Lacaita, A. Benvenuti, F. Pellizzer, S. Hudgens, and R. Bez, "Scaling analysis of phase-change memory technology," in IEDM Tech. Dig., 2003, pp. 29.6.1-29.6.4.
-
(2003)
IEDM Tech. Dig.
, pp. 2961-2964
-
-
Pirovano, A.1
Lacaita, A.2
Benvenuti, A.3
Pellizzer, F.4
Hudgens, S.5
Bez, R.6
|