-
1
-
-
0035066383
-
Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation
-
J. M. Kyriakis, J. Avruch, Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol. Rev. 81, 807-869 (2001).
-
(2001)
Physiol. Rev.
, vol.81
, pp. 807-869
-
-
Kyriakis, J.M.1
Avruch, J.2
-
2
-
-
0036282743
-
Osmotic stress signaling and osmoadaptation in yeasts
-
S. Hohmann, Osmotic stress signaling and osmoadaptation in yeasts. Microbiol. Mol. Biol. Rev. 66, 300-372 (2002).
-
(2002)
Microbiol. Mol. Biol. Rev.
, vol.66
, pp. 300-372
-
-
Hohmann, S.1
-
3
-
-
0036668632
-
Dealing with osmostress through MAP kinase activation
-
E. De Nadal, P. M. Alepuz, F. Posas, Dealing with osmostress through MAP kinase activation. EMBO Rep. 3, 735-740 (2002).
-
(2002)
EMBO Rep.
, vol.3
, pp. 735-740
-
-
De Nadal, E.1
Alepuz, P.M.2
Posas, F.3
-
4
-
-
75649108602
-
Multilayered control of gene expression by stress-activated protein kinases
-
E. De Nadal, F. Posas, Multilayered control of gene expression by stress-activated protein kinases. EMBO J. 29, 4-13 (2010).
-
(2010)
EMBO J.
, vol.29
, pp. 4-13
-
-
De Nadal, E.1
Posas, F.2
-
6
-
-
0033588106
-
1 arrest involves a positive regulation of G1 cyclin expression by the S phase cyclin Clb5
-
1 arrest involves a positive regulation of G1 cyclin expression by the S phase cyclin Clb5. J. Biol. Chem. 274, 24220-24231 (1999).
-
(1999)
J. Biol. Chem.
, vol.274
, pp. 24220-24231
-
-
Li, X.1
Cai, M.2
-
7
-
-
0033625759
-
Involvement of the MKK6-p38γ cascade in γ-radiation-induced cell cycle arrest
-
X.Wang, C. H. McGowan, M. Zhao, L. He, J. S. Downey, C. Fearns, Y.Wang, S. Huang, J. Han, Involvement of the MKK6-p38γ cascade in γ-radiation-induced cell cycle arrest. Mol. Cell. Biol. 20, 4543-4552 (2000).
-
(2000)
Mol. Cell. Biol.
, vol.20
, pp. 4543-4552
-
-
Wang, X.1
McGowan, C.H.2
Zhao, M.3
He, L.4
Downey, J.S.5
Fearns, C.6
Wang, Y.7
Huang, S.8
Han, J.9
-
8
-
-
0035181833
-
Regulation of cell cycle progression by Swe1p and Hog1p following hypertonic stress
-
M. R. Alexander, M. Tyers, M. Perret, B. M. Craig, K. S. Fang, M. C. Gustin, Regulation of cell cycle progression by Swe1p and Hog1p following hypertonic stress. Mol. Biol. Cell 12, 53-62 (2001).
-
(2001)
Mol. Biol. Cell
, vol.12
, pp. 53-62
-
-
Alexander, M.R.1
Tyers, M.2
Perret, M.3
Craig, B.M.4
Fang, K.S.5
Gustin, M.C.6
-
9
-
-
35748979998
-
Control of cell cycle in response to osmostress: Lessons from yeast
-
J. Clotet, F. Posas, Control of cell cycle in response to osmostress: Lessons from yeast. Methods Enzymol. 428, 63-76 (2007).
-
(2007)
Methods Enzymol.
, vol.428
, pp. 63-76
-
-
Clotet, J.1
Posas, F.2
-
10
-
-
33745737918
-
Phosphorylation of Hsl1 by Hog1 leads to a G2 arrest essential for cell survival at high osmolarity
-
J. Clotet, X. Escoté, M. A. Adrover, G. Yaakov, E. Garí, M. Aldea, E. De Nadal, F. Posas, Phosphorylation of Hsl1 by Hog1 leads to a G2 arrest essential for cell survival at high osmolarity. EMBO J. 25, 2338-2346 (2006).
-
(2006)
EMBO J.
, vol.25
, pp. 2338-2346
-
-
Clotet, J.1
Escoté, X.2
Adrover, M.A.3
Yaakov, G.4
Garí, E.5
Aldea, M.6
De Nadal, E.7
Posas, F.8
-
11
-
-
5444253797
-
Hog1 mediates cell-cycle arrest in G1 phase by the dual targeting of Sic1
-
X. Escoté, M. Zapater, J. Clotet, F. Posas, Hog1 mediates cell-cycle arrest in G1 phase by the dual targeting of Sic1. Nat. Cell Biol. 6, 997-1002 (2004).
-
(2004)
Nat. Cell Biol.
, vol.6
, pp. 997-1002
-
-
Escoté, X.1
Zapater, M.2
Clotet, J.3
Posas, F.4
-
12
-
-
0037774606
-
Combination of two activating mutations in one HOG1 gene forms hyperactive enzymes that induce growth arrest
-
G. Yaakov, M. Bell, S. Hohmann, D. Engelberg, Combination of two activating mutations in one HOG1 gene forms hyperactive enzymes that induce growth arrest. Mol. Cell. Biol. 23, 4826-4840 (2003).
-
(2003)
Mol. Cell. Biol.
, vol.23
, pp. 4826-4840
-
-
Yaakov, G.1
Bell, M.2
Hohmann, S.3
Engelberg, D.4
-
13
-
-
0025944525
-
The role of SWI4 and SWI6 in the activity of G1 cyclins in yeast
-
K. Nasmyth, L. Dirick, The role of SWI4 and SWI6 in the activity of G1 cyclins in yeast. Cell 66, 995-1013 (1991).
-
(1991)
Cell
, vol.66
, pp. 995-1013
-
-
Nasmyth, K.1
Dirick, L.2
-
15
-
-
0029655723
-
Start-specific transcription in yeast
-
L. Breeden, Start-specific transcription in yeast. Curr. Top. Microbiol. Immunol. 208, 95-127 (1996).
-
(1996)
Curr. Top. Microbiol. Immunol.
, vol.208
, pp. 95-127
-
-
Breeden, L.1
-
16
-
-
0035969559
-
Multisite phosphorylation of a CDK inhibitor sets a threshold for the onset of DNA replication
-
P. Nash, X. Tang, S. Orlicky, Q. Chen, F. B. Gertler, M. D. Mendenhall, F. Sicheri, T. Pawson, M. Tyers, Multisite phosphorylation of a CDK inhibitor sets a threshold for the onset of DNA replication. Nature 414, 514-521 (2001).
-
(2001)
Nature
, vol.414
, pp. 514-521
-
-
Nash, P.1
Tang, X.2
Orlicky, S.3
Chen, Q.4
Gertler, F.B.5
Mendenhall, M.D.6
Sicheri, F.7
Pawson, T.8
Tyers, M.9
-
17
-
-
0037034048
-
S-Cdk-dependent phosphorylation of Sld2 essential for chromosomal DNA replication in budding yeast
-
H. Masumoto, S. Muramatsu, Y. Kamimura, H. Araki, S-Cdk-dependent phosphorylation of Sld2 essential for chromosomal DNA replication in budding yeast. Nature 415, 651-655 (2002).
-
(2002)
Nature
, vol.415
, pp. 651-655
-
-
Masumoto, H.1
Muramatsu, S.2
Kamimura, Y.3
Araki, H.4
-
18
-
-
33846330909
-
CDK-dependent phosphorylation of Sld2 and Sld3 initiates DNA replication in budding yeast
-
S. Tanaka, T. Umemori, K. Hirai, S. Muramatsu, Y. Kamimura, H. Araki, CDK-dependent phosphorylation of Sld2 and Sld3 initiates DNA replication in budding yeast. Nature 445, 328-332 (2007).
-
(2007)
Nature
, vol.445
, pp. 328-332
-
-
Tanaka, S.1
Umemori, T.2
Hirai, K.3
Muramatsu, S.4
Kamimura, Y.5
Araki, H.6
-
20
-
-
0030612012
-
Phosphorylation of Sic1p by G1 Cdk required for its degradation and entry into S phase
-
R. Verma, R. S. Annan, M. J. Huddleston, S. A. Carr, G. Reynard, R. J. Deshaies, Phosphorylation of Sic1p by G1 Cdk required for its degradation and entry into S phase. Science 278, 455-460 (1997).
-
(1997)
Science
, vol.278
, pp. 455-460
-
-
Verma, R.1
Annan, R.S.2
Huddleston, M.J.3
Carr, S.A.4
Reynard, G.5
Deshaies, R.J.6
-
21
-
-
34547131083
-
Phosphorylation of the Sic1 inhibitor of B-type cyclins in Saccharomyces cerevisiae is not essential but contributes to cell cycle robustness
-
F. R. Cross, L. Schroeder, J. M. Bean, Phosphorylation of the Sic1 inhibitor of B-type cyclins in Saccharomyces cerevisiae is not essential but contributes to cell cycle robustness. Genetics 176, 1541-1555 (2007).
-
(2007)
Genetics
, vol.176
, pp. 1541-1555
-
-
Cross, F.R.1
Schroeder, L.2
Bean, J.M.3
-
22
-
-
22844435102
-
Control of cell cycle progression by the stress-activated Hog1 MAPK
-
M. Zapater, J. Clotet, X. Escoté, F. Posas, Control of cell cycle progression by the stress-activated Hog1 MAPK. Cell Cycle 4, 6-7 (2005).
-
(2005)
Cell Cycle
, vol.4
, pp. 6-7
-
-
Zapater, M.1
Clotet, J.2
Escoté, X.3
Posas, F.4
-
23
-
-
34347381069
-
Irreversible cell-cycle transitions are due to systems-level feedback
-
B. Novak, J. J. Tyson, B. Gyorffy, A. Csikasz-Nagy, Irreversible cell-cycle transitions are due to systems-level feedback. Nat. Cell Biol. 9, 724-728 (2007).
-
(2007)
Nat. Cell Biol.
, vol.9
, pp. 724-728
-
-
Novak, B.1
Tyson, J.J.2
Gyorffy, B.3
Csikasz-Nagy, A.4
-
25
-
-
3342942821
-
Cycling without the cyclosome: Modeling a yeast strain lacking the APC
-
B. R. Thornton, K. C. Chen, F. R. Cross, J. J. Tyson, D. P. Toczyski, Cycling without the cyclosome: Modeling a yeast strain lacking the APC. Cell Cycle 3, 629-633 (2004).
-
(2004)
Cell Cycle
, vol.3
, pp. 629-633
-
-
Thornton, B.R.1
Chen, K.C.2
Cross, F.R.3
Tyson, J.J.4
Toczyski, D.P.5
-
26
-
-
66149137998
-
Dynamic signaling in the Hog1 MAPK pathway relies on high basal signal transduction
-
J. Macia, S. Regot, T. Peeters, N. Conde, R. Solé, F. Posas, Dynamic signaling in the Hog1 MAPK pathway relies on high basal signal transduction. Sci. Signal. 2, ra13 (2009).
-
(2009)
Sci. Signal.
, vol.2
-
-
Macia, J.1
Regot, S.2
Peeters, T.3
Conde, N.4
Solé, R.5
Posas, F.6
-
27
-
-
0036212767
-
Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors
-
B. Schoeberl, C. Eichler-Jonsson, E. D. Gilles, G. Muller, Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors. Nat. Biotechnol. 20, 370-375 (2002).
-
(2002)
Nat. Biotechnol.
, vol.20
, pp. 370-375
-
-
Schoeberl, B.1
Eichler-Jonsson, C.2
Gilles, E.D.3
Muller, G.4
-
28
-
-
23444449142
-
Integrative model of the response of yeast to osmotic shock
-
E. Klipp, B. Nordlander, R. Krüger, P. Gennemark, S. Hohmann, Integrative model of the response of yeast to osmotic shock. Nat. Biotechnol. 23, 975-982 (2005).
-
(2005)
Nat. Biotechnol.
, vol.23
, pp. 975-982
-
-
Klipp, E.1
Nordlander, B.2
Krüger, R.3
Gennemark, P.4
Hohmann, S.5
-
29
-
-
47549106474
-
Positive feedback of G1 cyclins ensures coherent cell cycle entry
-
J. M. Skotheim, S. Di Talia, E. D. Siggia, F. R. Cross, Positive feedback of G1 cyclins ensures coherent cell cycle entry. Nature 454, 291-296 (2008).
-
(2008)
Nature
, vol.454
, pp. 291-296
-
-
Skotheim, J.M.1
Di Talia, S.2
Siggia, E.D.3
Cross, F.R.4
-
30
-
-
55849110775
-
Stb1 collaborates with other regulators to modulate the G1-specific transcriptional circuit
-
R. A. De Bruin, T. I. Kalashnikova, C. Wittenberg, Stb1 collaborates with other regulators to modulate the G1-specific transcriptional circuit. Mol. Cell. Biol. 28, 6919-6928 (2008).
-
(2008)
Mol. Cell. Biol.
, vol.28
, pp. 6919-6928
-
-
De Bruin, R.A.1
Kalashnikova, T.I.2
Wittenberg, C.3
-
31
-
-
0035114070
-
1 cell cycle delay and downregulation of Cln3/Cdc28 activity in Saccharomyces cerevisiae
-
1 cell cycle delay and downregulation of Cln3/Cdc28 activity in Saccharomyces cerevisiae. Mol. Microbiol. 39, 1022-1035 (2001).
-
(2001)
Mol. Microbiol.
, vol.39
, pp. 1022-1035
-
-
Bellí, G.1
Garí, E.2
Aldea, M.3
Herrero, E.4
-
32
-
-
0035012401
-
Stress-induced map kinase Hog1 is part of transcription activation complexes
-
P. M. Alepuz, A. Jovanovic, V. Reiser, G. Ammerer, Stress-induced map kinase Hog1 is part of transcription activation complexes. Mol. Cell 7, 767-777 (2001).
-
(2001)
Mol. Cell
, vol.7
, pp. 767-777
-
-
Alepuz, P.M.1
Jovanovic, A.2
Reiser, V.3
Ammerer, G.4
-
33
-
-
77956238040
-
A model of yeast cellcycle regulation based on multisite phosphorylation
-
D. Barik, W. T. Baumann, M. R. Paul, B. Novak, J. J. Tyson, A model of yeast cellcycle regulation based on multisite phosphorylation. Mol. Syst. Biol. 6, 405 (2010).
-
(2010)
Mol. Syst. Biol.
, vol.6
, pp. 405
-
-
Barik, D.1
Baumann, W.T.2
Paul, M.R.3
Novak, B.4
Tyson, J.J.5
-
34
-
-
33750415038
-
SBML-PET: A Systems Biology Markup Language-based parameter estimation tool
-
Z. Zi, E. Klipp, SBML-PET: A Systems Biology Markup Language-based parameter estimation tool. Bioinformatics 22, 2704-2705 (2006).
-
(2006)
Bioinformatics
, vol.22
, pp. 2704-2705
-
-
Zi, Z.1
Klipp, E.2
-
35
-
-
51249086247
-
SBML-SAT: A systems biology markup language (SBML) based sensitivity analysis tool
-
Z. Zi, Y. Zheng, A. E. Rundell, E. Klipp, SBML-SAT: A systems biology markup language (SBML) based sensitivity analysis tool. BMC Bioinformatics 9, 342 (2008).
-
(2008)
BMC Bioinformatics
, vol.9
, pp. 342
-
-
Zi, Z.1
Zheng, Y.2
Rundell, A.E.3
Klipp, E.4
-
36
-
-
0033542436
-
Binding of TBP to promoters in vivo is stimulated by activators and requires Pol II holoenzyme
-
L. Kuras, K. Struhl, Binding of TBP to promoters in vivo is stimulated by activators and requires Pol II holoenzyme. Nature 399, 609-613 (1999).
-
(1999)
Nature
, vol.399
, pp. 609-613
-
-
Kuras, L.1
Struhl, K.2
-
37
-
-
0037073720
-
An essential function of yeast cyclin-dependent kinase Cdc28 maintains chromosome stability
-
A. A. Kitazono, S. J. Kron, An essential function of yeast cyclin-dependent kinase Cdc28 maintains chromosome stability. J. Biol. Chem. 277, 48627-48634 (2002).
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 48627-48634
-
-
Kitazono, A.A.1
Kron, S.J.2
-
38
-
-
80053288673
-
-
note
-
Acknowledgments: We are grateful to G. Yaakov, S. Hohmann, E. Garí, and M. Aldea for helpful discussions and suggestions; M. L. Rodriguez and L. Subirana for excellent technical assistance; and E. de Nadal for constant support. Funding: M.A.A. is a recipient of an FPU fellowship (Ministerio de Educacion). Z.Z. was supported by the International Max Planck Research School for Computational Biology and Scientific Computing. This work was supported by grants QUASI, CELLCOMPUT, and UNICELLSYS from the European Community's sixth and seventh framework programs to F.P. and E.K. and grants from Ministerio de Ciencia y Innovación BIO2009-07762 and Consolider Ingenio 2010 program (grant CSD2007-0015) of the Spanish government and through contract no. ERAS-CT-2003-980409 of the European Commission, DG Research, FP6 as part of a European Young Investigator scheme award to F.P. F.P.'s research is supported by Institució Catalana de Recerca i Estudis Avançats Acadèmia for excellence in research (Generalitat de Catalunya) and Fundación Marcelino Botín. Author contributions: F.P. and E.K. designed the study; M.A.A., A.D., A.G.-N., J.J., M.N.-R., and J.C. performed the experiments; all authors analyzed the data; Z.Z., J.S., and E.K. built the model; and F.P., E.K., and Z.Z. wrote the manuscript. Competing interests: The authors declare that they have no competing interests.
-
-
-
|