메뉴 건너뛰기




Volumn 2, Issue 63, 2009, Pages

Dynamic signaling in the Hog1 MAPK pathway relies on high basal signal transduction

Author keywords

[No Author keywords available]

Indexed keywords

MITOGEN ACTIVATED PROTEIN KINASE; PROTEIN HOG1; UNCLASSIFIED DRUG; FUS3 PROTEIN, S CEREVISIAE; HOG1 PROTEIN, S CEREVISIAE; MEMBRANE PROTEIN; SACCHAROMYCES CEREVISIAE PROTEIN; SHO1 PROTEIN, S CEREVISIAE; SNL1 PROTEIN, S CEREVISIAE;

EID: 66149137998     PISSN: 19450877     EISSN: 19379145     Source Type: Journal    
DOI: 10.1126/scisignal.2000056     Document Type: Article
Times cited : (109)

References (39)
  • 1
    • 0035066383 scopus 로고    scopus 로고
    • Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation
    • J. M. Kyriakis, J. Avruch, Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol. Rev. 81, 807-869 (2001).
    • (2001) Physiol. Rev. , vol.81 , pp. 807-869
    • Kyriakis, J.M.1    Avruch, J.2
  • 2
    • 34547216984 scopus 로고    scopus 로고
    • Function and regulation in MAPK signaling pathways: Lessons learned from the yeast Saccharomyces cerevisiae
    • R. E. Chen, J. Thorner, Function and regulation in MAPK signaling pathways: Lessons learned from the yeast Saccharomyces cerevisiae. Biochim. Biophys. Acta 1773, 1311-1340 (2007).
    • (2007) Biochim. Biophys. Acta , vol.1773 , pp. 1311-1340
    • Chen, R.E.1    Thorner, J.2
  • 3
    • 8644264053 scopus 로고    scopus 로고
    • MAP kinases and the adaptive response to hypertonicity: Functional preservation from yeast to mammals
    • D. Sheikh-Hamad, M. C. Gustin, MAP kinases and the adaptive response to hypertonicity: Functional preservation from yeast to mammals. Am. J. Physiol. Renal Physiol. 287, F1102-F1110 (2004).
    • (2004) Am. J. Physiol. Renal Physiol. , vol.287
    • Sheikh-Hamad, D.1    Gustin, M.C.2
  • 4
    • 0036668632 scopus 로고    scopus 로고
    • Dealing with osmostress through MAP kinase activation
    • E. de Nadal, P. M. Alepuz, F. Posas, Dealing with osmostress through MAP kinase activation. EMBO Rep. 3, 735-740 (2002).
    • (2002) EMBO Rep. , vol.3 , pp. 735-740
    • De Nadal, E.1    Alepuz, P.M.2    Posas, F.3
  • 6
    • 36249014341 scopus 로고    scopus 로고
    • Mucins, osmosensors in eukaryotic cells?
    • E. de Nadal, F. X. Real, F. Posas, Mucins, osmosensors in eukaryotic cells? Trends Cell Biol. 17, 571-574 (2007).
    • (2007) Trends Cell Biol. , vol.17 , pp. 571-574
    • De Nadal, E.1    Real, F.X.2    Posas, F.3
  • 7
    • 0035341895 scopus 로고    scopus 로고
    • The Ste20 group kinases as regulators of MAP kinase cascades
    • I. Dan, N. M. Watanabe, A. Kusumi, The Ste20 group kinases as regulators of MAP kinase cascades. Trends Cell Biol. 11, 220-230 (2001).
    • (2001) Trends Cell Biol. , vol.11 , pp. 220-230
    • Dan, I.1    Watanabe, N.M.2    Kusumi, A.3
  • 8
    • 0034282235 scopus 로고    scopus 로고
    • Polarized localization of yeast Pbs2 depends on osmostress, the membrane protein Sho1 and Cdc42
    • V. Reiser, S. M. Salah, G. Ammerer, Polarized localization of yeast Pbs2 depends on osmostress, the membrane protein Sho1 and Cdc42. Nat. Cell Biol. 2, 620-627 (2000).
    • (2000) Nat. Cell Biol. , vol.2 , pp. 620-627
    • Reiser, V.1    Salah, S.M.2    Ammerer, G.3
  • 9
    • 0031658234 scopus 로고    scopus 로고
    • Requirement of STE50 for osmostress-induced activation of the STE11 mitogen-activated protein kinase kinase kinase in the high-osmolarity glycerol response pathway
    • F. Posas, E. A. Witten, H. Saito, Requirement of STE50 for osmostress-induced activation of the STE11 mitogen-activated protein kinase kinase kinase in the high-osmolarity glycerol response pathway. Mol. Cell. Biol. 18, 5788-5796 (1998).
    • (1998) Mol. Cell. Biol. , vol.18 , pp. 5788-5796
    • Posas, F.1    Witten, E.A.2    Saito, H.3
  • 10
    • 31344447186 scopus 로고    scopus 로고
    • The RA domain of Ste50 adaptor protein is required for delivery of Ste11 to the plasma membrane in the filamentous growth signaling pathway of the yeast Saccharomyces cerevisiae
    • D. M. Truckses, J. E. Bloomekatz, J. Thorner, The RA domain of Ste50 adaptor protein is required for delivery of Ste11 to the plasma membrane in the filamentous growth signaling pathway of the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 26, 912-928 (2006).
    • (2006) Mol. Cell. Biol. , vol.26 , pp. 912-928
    • Truckses, D.M.1    Bloomekatz, J.E.2    Thorner, J.3
  • 11
    • 14844349236 scopus 로고    scopus 로고
    • Interaction with the SH3 domain protein Bem1 regulates signaling by the Saccharomyces cerevisiae p21-activated kinase Ste20
    • M. J. Winters, P. M. Pryciak, Interaction with the SH3 domain protein Bem1 regulates signaling by the Saccharomyces cerevisiae p21-activated kinase Ste20. Mol. Cell. Biol. 25, 2177-2190 (2005).
    • (2005) Mol. Cell. Biol. , vol.25 , pp. 2177-2190
    • Winters, M.J.1    Pryciak, P.M.2
  • 12
    • 0030815562 scopus 로고    scopus 로고
    • Osmotic activation of the HOG MAPK pathway via Ste11 p MAPKKK: Scaffold role of Pbs2p MAPKK
    • F. Posas, H. Saito, Osmotic activation of the HOG MAPK pathway via Ste11 p MAPKKK: Scaffold role of Pbs2p MAPKK. Science 276, 1702-1705 (1997).
    • (1997) Science , vol.276 , pp. 1702-1705
    • Posas, F.1    Saito, H.2
  • 13
    • 33746313417 scopus 로고    scopus 로고
    • Adaptor functions of Cdc42, Ste50, and Sho1 in the yeast osmoregulatory HOG MAPK pathway
    • K. Tatebayashi, K. Yamamoto, K. Tanaka, T. Tomida, T. Maruoka, E. Kasukawa, H. Saito, Adaptor functions of Cdc42, Ste50, and Sho1 in the yeast osmoregulatory HOG MAPK pathway. EMBO J. 25, 3033-3044 (2006).
    • (2006) EMBO J. , vol.25 , pp. 3033-3044
    • Tatebayashi, K.1    Yamamoto, K.2    Tanaka, K.3    Tomida, T.4    Maruoka, T.5    Kasukawa, E.6    Saito, H.7
  • 14
    • 2942685384 scopus 로고    scopus 로고
    • Sho1 and Pbs2 act as coscaffolds linking components in the yeast high osmolarity MAP kinase pathway
    • A. Zarrinpar, R. P. Bhattacharyya, M. P. Nittler, W. A. Lim, Sho1 and Pbs2 act as coscaffolds linking components in the yeast high osmolarity MAP kinase pathway. Mol. Cell 14, 825-832 (2004).
    • (2004) Mol. Cell , vol.14 , pp. 825-832
    • Zarrinpar, A.1    Bhattacharyya, R.P.2    Nittler, M.P.3    Lim, W.A.4
  • 15
    • 0030595378 scopus 로고    scopus 로고
    • Yeast HOG1 MAP kinase cascade is regulated by a multistep phosphorelay mechanism in the SLN1-YPD1-SSK1 "two-component" osmosensor
    • F. Posas, S. M. Wurgler-Murphy, T. Maeda, E. A. Witten, T. C. Thai, H. Saito, Yeast HOG1 MAP kinase cascade is regulated by a multistep phosphorelay mechanism in the SLN1-YPD1-SSK1 "two-component" osmosensor. Cell 86, 865-875 (1996).
    • (1996) Cell , vol.86 , pp. 865-875
    • Posas, F.1    Wurgler-Murphy, S.M.2    Maeda, T.3    Witten, E.A.4    Thai, T.C.5    Saito, H.6
  • 16
    • 0032473427 scopus 로고    scopus 로고
    • Activation of the yeast SSK2 MAP kinase kinase kinase by the SSK1 two-component response regulator
    • F. Posas, H. Saito, Activation of the yeast SSK2 MAP kinase kinase kinase by the SSK1 two-component response regulator. EMBO J. 17, 1385-1394 (1998).
    • (1998) EMBO J. , vol.17 , pp. 1385-1394
    • Posas, F.1    Saito, H.2
  • 17
    • 0029028962 scopus 로고
    • Activation of yeast PBS2 MAPKK by MAPKKKs or by binding of an SH3-containing osmosensor
    • T. Maeda, M. Takekawa, H. Saito, Activation of yeast PBS2 MAPKK by MAPKKKs or by binding of an SH3-containing osmosensor. Science 269, 554-558 (1995).
    • (1995) Science , vol.269 , pp. 554-558
    • Maeda, T.1    Takekawa, M.2    Saito, H.3
  • 19
    • 9144254513 scopus 로고    scopus 로고
    • Regulation of the osmoregulatory HOG MAPK cascade in yeast
    • H. Saito, K. Tatebayashi, Regulation of the osmoregulatory HOG MAPK cascade in yeast. J. Biochem. 136, 267-272 (2004).
    • (2004) J. Biochem. , vol.136 , pp. 267-272
    • Saito, H.1    Tatebayashi, K.2
  • 21
  • 23
    • 38549084632 scopus 로고    scopus 로고
    • The frequency dependence of osmo-adaptation in Saccharomyces cerevisiae
    • J. T. Mettetal, D. Muzzey, C. Gomez-Uribe, A. van Oudenaarden, The frequency dependence of osmo-adaptation in Saccharomyces cerevisiae. Science 319, 482-484 (2008).
    • (2008) Science , vol.319 , pp. 482-484
    • Mettetal, J.T.1    Muzzey, D.2    Gomez-Uribe, C.3    Van Oudenaarden, A.4
  • 24
    • 0036282743 scopus 로고    scopus 로고
    • Osmotic stress signaling and osmoadaptation in yeasts
    • S. Hohmann, Osmotic stress signaling and osmoadaptation in yeasts. Microbiol. Mol. Biol. Rev. 66, 300-372 (2002).
    • (2002) Microbiol. Mol. Biol. Rev. , vol.66 , pp. 300-372
    • Hohmann, S.1
  • 25
    • 0036683337 scopus 로고    scopus 로고
    • Yeast go the whole HOG for the hyperosmotic response
    • S. M. O'Rourke, I. Herskowitz, E. K. O'Shea, Yeast go the whole HOG for the hyperosmotic response. Trends Genet. 18, 405-412 (2002).
    • (2002) Trends Genet. , vol.18 , pp. 405-412
    • O'Rourke, S.M.1    Herskowitz, I.2    O'Shea, E.K.3
  • 26
    • 0031027466 scopus 로고    scopus 로고
    • Regulation of the saccharomyces cerevisiae HOG1 mitogen-activated protein kinase by the PTP2 and PTP3 protein tyrosine phosphatases
    • S. M. Wurgler-Murphy, T. Maeda, E. A. Witten, H. Saito, Regulation of the Saccharomyces cerevisiae HOG1 mitogen-activated protein kinase by the PTP2 and PTP3 protein tyrosine phosphatases. Mol. Cell. Biol. 17, 1289-1297 (1997).
    • (1997) Mol. Cell. Biol. , vol.17 , pp. 1289-1297
    • Wurgler-Murphy, S.M.1    Maeda, T.2    Witten, E.A.3    Saito, H.4
  • 27
    • 0032189837 scopus 로고    scopus 로고
    • Regulated nucleo/cytoplasmic exchange of HOG1 MAPK requires the importin β homologs NMD5 and XPO1
    • P. Ferrigno, F. Posas, D. Koepp, H. Saito, P. A. Silver, Regulated nucleo/cytoplasmic exchange of HOG1 MAPK requires the importin β homologs NMD5 and XPO1. EMBO J. 17, 5606-5614 (1998).
    • (1998) EMBO J. , vol.17 , pp. 5606-5614
    • Ferrigno, P.1    Posas, F.2    Koepp, D.3    Saito, H.4    Silver, P.A.5
  • 28
    • 0030760722 scopus 로고    scopus 로고
    • Two protein-tyrosine phosphatases inactivate the osmotic stress response pathway in yeast by targeting the mitogen-activated protein kinase, Hog1
    • T. Jacoby, H. Flanagan, A. Faykin, A. G. Seto, C. Mattison, I. Ota, Two protein-tyrosine phosphatases inactivate the osmotic stress response pathway in yeast by targeting the mitogen-activated protein kinase, Hog1. J. Biol. Chem. 272, 17749-17755 (1997).
    • (1997) J. Biol. Chem. , vol.272 , pp. 17749-17755
    • Jacoby, T.1    Flanagan, H.2    Faykin, A.3    Seto, A.G.4    Mattison, C.5    Ota, I.6
  • 29
    • 0032541227 scopus 로고    scopus 로고
    • Protein phosphatase 2Cα inhibits the human stress-responsive p38 and JNK MAPK pathways
    • M. Takekawa, T. Maeda, H. Saito, Protein phosphatase 2Cα inhibits the human stress-responsive p38 and JNK MAPK pathways. EMBO J. 17, 4744-4752 (1998).
    • (1998) EMBO J. , vol.17 , pp. 4744-4752
    • Takekawa, M.1    Maeda, T.2    Saito, H.3
  • 30
    • 33847710318 scopus 로고    scopus 로고
    • Dissecting yeast Hog1 MAP kinase pathway using a chemical genetic approach
    • S. Kim, K. Shah, Dissecting yeast Hog1 MAP kinase pathway using a chemical genetic approach. FEBS Lett. 581, 1209-1216 (2007).
    • (2007) FEBS Lett. , vol.581 , pp. 1209-1216
    • Kim, S.1    Shah, K.2
  • 31
    • 33747371425 scopus 로고    scopus 로고
    • Analysis of mitogen-activated protein kinase signaling specificity in response to hyperosmotic stress: Use of an analog-sensitive HOG1 allele
    • P. J. Westfall, J. Thorner, Analysis of mitogen-activated protein kinase signaling specificity in response to hyperosmotic stress: Use of an analog-sensitive HOG1 allele. Eukaryot. Cell 5, 1215-1228 (2006).
    • (2006) Eukaryot. Cell , vol.5 , pp. 1215-1228
    • Westfall, P.J.1    Thorner, J.2
  • 32
    • 0025435397 scopus 로고
    • Interpreting the human phase response curve to multiple bright-light exposures
    • S. H. Strogatz, Interpreting the human phase response curve to multiple bright-light exposures. J. Biol. Rhythms 5, 169-174 (1990).
    • (1990) J. Biol. Rhythms , vol.5 , pp. 169-174
    • Strogatz, S.H.1
  • 33
    • 33947601883 scopus 로고    scopus 로고
    • Pheromone signaling pathways in yeast
    • H. G. Dohlman, J. E. Slessareva, Pheromone signaling pathways in yeast. Sci. STKE 2006, cm6 (2006).
    • (2006) Sci. STKE , vol.2006
    • Dohlman, H.G.1    Slessareva, J.E.2
  • 34
    • 33644507452 scopus 로고    scopus 로고
    • Comparative genomics of the HOG-signalling system in fungi
    • M. Krantz, E. Becit, S. Hohmann, Comparative genomics of the HOG-signalling system in fungi. Curr. Genet. 49, 137-151 (2006).
    • (2006) Curr. Genet. , vol.49 , pp. 137-151
    • Krantz, M.1    Becit, E.2    Hohmann, S.3
  • 35
    • 0034212551 scopus 로고    scopus 로고
    • Engineering stability in gene networks by autoregulation
    • A. Becskei, L. Serrano, Engineering stability in gene networks by autoregulation. Nature 405, 590-593 (2000).
    • (2000) Nature , vol.405 , pp. 590-593
    • Becskei, A.1    Serrano, L.2
  • 36
    • 0034213619 scopus 로고    scopus 로고
    • Neutralizing noise in gene networks
    • T. S. Gardner, J. J. Collins, Neutralizing noise in gene networks. Nature 405, 520-521 (2000).
    • (2000) Nature , vol.405 , pp. 520-521
    • Gardner, T.S.1    Collins, J.J.2
  • 39
    • 77953676871 scopus 로고    scopus 로고
    • We thank E. de Nadal for helpful discussions and support, M. Morillas and A. Vendrell for strains, and M. Grötli (Sweden) for inhibitor design and supply. This work was supported by an FPU fellowship to S.R.; grant CSD2007-0015 from Ministerio de Ciencia y Tecnología, Consolider Ingenio 2010 program; through the European Commission Directorate General Research, FP6 contract no. ERAS-CT-2003-980409 EURYI (European Young Investigator Awards) award (www.esf.org/euryi) and QUASI to F.P; and FP6-2005-NEST-PATH CELLCOMPUT project to F.P. and R.S. The FP laboratory also receives support from the Fundación Marcelino Botín and Institució Catalana de Recerca i Estudis Avançats (ICREA) Acadèmia (Generalitat de Catalunya)
    • We thank E. de Nadal for helpful discussions and support, M. Morillas and A. Vendrell for strains, and M. Grötli (Sweden) for inhibitor design and supply. This work was supported by an FPU fellowship to S.R.; grant CSD2007-0015 from Ministerio de Ciencia y Tecnología, Consolider Ingenio 2010 program; through the European Commission Directorate General Research, FP6 contract no. ERAS-CT-2003-980409 EURYI (European Young Investigator Awards) award (www.esf.org/euryi) and QUASI to F.P; and FP6-2005-NEST-PATH CELLCOMPUT project to F.P. and R.S. The FP laboratory also receives support from the Fundación Marcelino Botín and Institució Catalana de Recerca i Estudis Avançats (ICREA) Acadèmia (Generalitat de Catalunya).


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.