메뉴 건너뛰기




Volumn , Issue , 2011, Pages 708-716

Bounded coordinate-descent for biological sequence classification in high dimensional predictor space

Author keywords

Greedy coordinate descent; Logistic regression; Sequence classification; String classification; Support vectormachines

Indexed keywords

BIOINFORMATICS; CLASSIFICATION (OF INFORMATION); REGRESSION ANALYSIS;

EID: 80052661040     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2020408.2020519     Document Type: Conference Paper
Times cited : (44)

References (38)
  • 1
    • 48849104146 scopus 로고    scopus 로고
    • Coordinate descent method for large-scale l2-loss linear support vector machines
    • K.-W. Chang, C.-J. Hsieh, and C.-J. Lin. Coordinate descent method for large-scale l2-loss linear support vector machines. J. Mach. Learn. Res., 9:1369-1398, 2008.
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 1369-1398
    • Chang, K.-W.1    Hsieh, C.-J.2    Lin, C.-J.3
  • 2
    • 33745616114 scopus 로고    scopus 로고
    • A machine learning information retrieval approach to protein fold recognition
    • DOI 10.1093/bioinformatics/btl102
    • J. Cheng and P. Baldi. A machine learning information retrieval approach to protein fold recognition. Bioinformatics, 22(12):1456-1463, 2006. (Pubitemid 43985316)
    • (2006) Bioinformatics , vol.22 , Issue.12 , pp. 1456-1463
    • Cheng, J.1    Baldi, P.2
  • 3
    • 0035014847 scopus 로고    scopus 로고
    • Multi-class protein fold recognition using support vector machines and neural networks
    • C. H. Ding and I. Dubchak. Multi-class protein fold recognition using support vector machines and neural networks. Bioinformatics, 17(4):349-358, 2001. (Pubitemid 32421929)
    • (2001) Bioinformatics , vol.17 , Issue.4 , pp. 349-358
    • Ding, C.H.Q.1    Dubchak, I.2
  • 4
    • 0031743421 scopus 로고    scopus 로고
    • Profile hidden Markov models
    • S. R. Eddy. Profile hidden markov models. Bioinformatics, 14(9):755-763, 1998. (Pubitemid 28552108)
    • (1998) Bioinformatics , vol.14 , Issue.9 , pp. 755-763
    • Eddy, S.R.1
  • 6
    • 77950537175 scopus 로고    scopus 로고
    • Regularization paths for generalized linear models via coordinate descent
    • J. H. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for generalized linear models via coordinate descent. Journal of Stat. Soft., 33(1):1-22, 2010.
    • (2010) Journal of Stat. Soft. , vol.33 , Issue.1 , pp. 1-22
    • Friedman, J.H.1    Hastie, T.2    Tibshirani, R.3
  • 7
    • 34548105186 scopus 로고    scopus 로고
    • Large-scale bayesian logistic regression for text categorization
    • DOI 10.1198/004017007000000245
    • A. Genkin, D. Lewis, and D. Madigan. Large-scale bayesian logistic regression for text categorization. Technometrics, 49(3):291-304, 2007. (Pubitemid 47292487)
    • (2007) Technometrics , vol.49 , Issue.3 , pp. 291-304
    • Genkin, A.1    Lewis, D.D.2    Madigan, D.3
  • 14
    • 65449125907 scopus 로고    scopus 로고
    • Fast logistic regression for text categorization with variable-length n-grams
    • USA
    • G. Ifrim, G. Bakir, and G. Weikum. Fast logistic regression for text categorization with variable-length n-grams. In KDD, pages 354-362, USA, 2008.
    • (2008) KDD , pp. 354-362
    • Ifrim, G.1    Bakir, G.2    Weikum, G.3
  • 15
    • 0033289037 scopus 로고    scopus 로고
    • Using the fisher kernel method to detect remote protein homologies
    • AAAI Press
    • T. Jaakkola, M. Diekhans, and D. Haussler. Using the fisher kernel method to detect remote protein homologies. In ICISMB, pages 149-158. AAAI Press, 1999.
    • (1999) ICISMB , pp. 149-158
    • Jaakkola, T.1    Diekhans, M.2    Haussler, D.3
  • 18
    • 30344471433 scopus 로고    scopus 로고
    • An application of boosting to graph classification
    • T. Kudo, E. Maeda and Y. Matsumoto. An Application of Boosting to Graph Classification. In NIPS, 2004.
    • (2004) NIPS
    • Kudo, T.1    Maeda, E.2    Matsumoto, Y.3
  • 20
    • 85162009632 scopus 로고    scopus 로고
    • Scalable algorithms for string kernels with inexact matching
    • P. Kuksa, P. H. Huang, and V. Pavlovic. Scalable algorithms for string kernels with inexact matching. In NIPS, 2008.
    • (2008) NIPS
    • Kuksa, P.1    Huang, P.H.2    Pavlovic, V.3
  • 21
    • 1542714925 scopus 로고    scopus 로고
    • Mismatch string kernels for discriminative protein classification
    • DOI 10.1093/bioinformatics/btg431
    • C. Leslie, E. Eskin, A. Cohen, J. Weston, and W. S. Noble. Mismatch string kernels for discriminative protein classification. Bioinformatics, 20(4):467-476, 2004. (Pubitemid 38344326)
    • (2004) Bioinformatics , vol.20 , Issue.4 , pp. 467-476
    • Leslie, C.S.1    Eskin, E.2    Cohen, A.3    Weston, J.4    Noble, W.S.5
  • 22
    • 85156187897 scopus 로고    scopus 로고
    • Mismatch string kernels for svm protein classification
    • C. Leslie, E. Eskin, and W. Noble. Mismatch string kernels for svm protein classification. In NIPS, 2002.
    • (2002) NIPS
    • Leslie, C.1    Eskin, E.2    Noble, W.3
  • 23
    • 0036358995 scopus 로고    scopus 로고
    • The spectrum kernel: A string kernel for svm protein classification
    • C. Leslie, E. Eskin, and W. Noble. The spectrum kernel: a string kernel for svm protein classification. In Pacific Biocomputing Symposium, pages 564-575, 2002.
    • (2002) Pacific Biocomputing Symposium , pp. 564-575
    • Leslie, C.1    Eskin, E.2    Noble, W.3
  • 24
    • 84883575579 scopus 로고    scopus 로고
    • Fast string kernels using inexact matching for protein sequences
    • C. Leslie and R. Kuang. Fast string kernels using inexact matching for protein sequences. J. Mach. Learn. Res., 5:1435-1455, 2004.
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 1435-1455
    • Leslie, C.1    Kuang, R.2
  • 25
    • 34047133694 scopus 로고    scopus 로고
    • Feature extraction for classification of proteomic mass spectra: A comparative study
    • I. Levner, V. Bulitko, and G. Lin. Feature extraction for classification of proteomic mass spectra: A comparative study. Studies in Fuzziness and Soft Computing, 207:607-624, 2006.
    • (2006) Studies in Fuzziness and Soft Computing , vol.207 , pp. 607-624
    • Levner, I.1    Bulitko, V.2    Lin, G.3
  • 26
    • 0036376041 scopus 로고    scopus 로고
    • Combining pairwise sequence similarity and support vector machines for remote protein homology detection
    • USA
    • L. Liao and W. S. Noble. Combining pairwise sequence similarity and support vector machines for remote protein homology detection. In ICCB, pages 225-232, USA, 2002.
    • (2002) ICCB , pp. 225-232
    • Liao, L.1    Noble, W.S.2
  • 27
    • 44649088319 scopus 로고    scopus 로고
    • Trust region Newton method for large-scale logistic regression
    • C.-J. Lin, R. C. Weng, and S. S. Keerthi. Trust region Newton method for large-scale logistic regression. J. Mach. Learn. Res., 9:627-650, 2008.
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 627-650
    • Lin, C.-J.1    Weng, R.C.2    Keerthi, S.S.3
  • 28
    • 70350663114 scopus 로고    scopus 로고
    • Large-scale sparse logistic regression
    • USA
    • J. Liu, J. Chen, and J. Ye. Large-scale sparse logistic regression. In KDD, pages 547-556, USA, 2009.
    • (2009) KDD , pp. 547-556
    • Liu, J.1    Chen, J.2    Ye., J.3
  • 31
    • 37549027613 scopus 로고    scopus 로고
    • SILVA: A comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB
    • E. Pruesse, C. Quast, K. Knittel, B. M. Fuchs, W. Ludwig, J. Peplies, and F. O. Glockner. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucl. Acids Res., 35(21):7188-7196, 2007.
    • (2007) Nucl. Acids Res. , vol.35 , Issue.21 , pp. 7188-7196
    • Pruesse, E.1    Quast, C.2    Knittel, K.3    Fuchs, B.M.4    Ludwig, W.5    Peplies, J.6    Glockner, F.O.7
  • 32
    • 12844274244 scopus 로고    scopus 로고
    • Boosting as a regularized path to a maximum margin classifier
    • S. Rosset, J. Zhu, and T. Hastie. Boosting as a regularized path to a maximum margin classifier. J. Mach. Learn. Res., 5:941-973, 2004.
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 941-973
    • Rosset, S.1    Zhu, J.2    Hastie, T.3
  • 34
    • 43149103140 scopus 로고    scopus 로고
    • ROC analysis: Applications to the classification of biological sequences and 3D structures
    • DOI 10.1093/bib/bbm064
    • P. Sonego, A. Kocsor, and S. Pongor. ROC analysis: applications to the classification of biological sequences and 3D structures. Brief. in Bioinf., 9(3):198-209, 2008. (Pubitemid 351637942)
    • (2008) Briefings in Bioinformatics , vol.9 , Issue.3 , pp. 198-209
    • Sonego, P.1    Kocsor, A.2    Pongor, S.3
  • 35
    • 77956555214 scopus 로고    scopus 로고
    • Coffin : A computational framework for linear svms
    • S. Sonnenburg and V. Franc. Coffin : A computational framework for linear svms. In ICML, 2010.
    • (2010) ICML
    • Sonnenburg, S.1    Franc, V.2
  • 37
    • 46749146509 scopus 로고    scopus 로고
    • A coordinate gradient descent method for nonsmooth separable minimization
    • P. Tseng and S. Yun. A coordinate gradient descent method for nonsmooth separable minimization. Mathematical Programming, 117:387-423, 2009.
    • (2009) Mathematical Programming , vol.117 , pp. 387-423
    • Tseng, P.1    Yun, S.2
  • 38
    • 25144481906 scopus 로고    scopus 로고
    • Semi-supervised protein classification using cluster kernels
    • DOI 10.1093/bioinformatics/bti497
    • J. Weston, C. Leslie, E. Ie, D. Zhou, A. Elisseeff, and W. S. Noble. Semi-supervised protein classification using cluster kernels. Bioinformatics, 21(15):3241-3247, 2005. (Pubitemid 41418437)
    • (2005) Bioinformatics , vol.21 , Issue.15 , pp. 3241-3247
    • Weston, J.1    Leslie, C.2    Le, E.3    Zhou, D.4    Elisseeff, A.5    Noble, W.S.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.