메뉴 건너뛰기




Volumn 57, Issue 8, 2011, Pages 5467-5484

Nonconcave penalized likelihood with NP-dimensionality

Author keywords

Coordinate optimization; folded concave penalty; high dimensionality; Lasso; nonconcave penalized likelihood; oracle property; SCAD; variable selection; weak oracle property

Indexed keywords

COORDINATE OPTIMIZATION; FOLDED-CONCAVE PENALTY; HIGH DIMENSIONALITY; LASSO; NONCONCAVE PENALIZED LIKELIHOODS; ORACLE PROPERTY; SCAD; VARIABLE SELECTION; WEAK ORACLE PROPERTY;

EID: 79960979995     PISSN: 00189448     EISSN: None     Source Type: Journal    
DOI: 10.1109/TIT.2011.2158486     Document Type: Review
Times cited : (307)

References (40)
  • 1
    • 0442312210 scopus 로고    scopus 로고
    • Regularization of wavelets approximations (with discussion)
    • A. Antoniadis and J. Fan, "Regularization of wavelets approximations (with discussion)," J. Amer. Statist. Assoc., vol. 96, pp. 939-967, 2001.
    • (2001) J. Amer. Statist. Assoc. , vol.96 , pp. 939-967
    • Antoniadis, A.1    Fan, J.2
  • 2
    • 0001917727 scopus 로고
    • Probability inequalities for the sum of independent random variables
    • G. Bennett, "Probability inequalities for the sum of independent random variables," J. Amer. Statist. Assoc., vol. 57, pp. 33-45, 1962.
    • (1962) J. Amer. Statist. Assoc. , vol.57 , pp. 33-45
    • Bennett, G.1
  • 3
    • 68649086910 scopus 로고    scopus 로고
    • Simultaneous analysis of Lasso and Dantzig selector
    • P. J. Bickel, Y. Ritov, and A. Tsybakov, "Simultaneous analysis of Lasso and Dantzig selector," Ann. Statist., vol. 37, pp. 1705-1732, 2009.
    • (2009) Ann. Statist. , vol.37 , pp. 1705-1732
    • Bickel, P.J.1    Ritov, Y.2    Tsybakov, A.3
  • 4
    • 84874257732 scopus 로고
    • Better subset regression using the non-negative garrote
    • L. Breiman, "Better subset regression using the non-negative garrote," Technometrics, vol. 37, pp. 373-384, 1995.
    • (1995) Technometrics , vol.37 , pp. 373-384
    • Breiman, L.1
  • 5
    • 50849114939 scopus 로고    scopus 로고
    • Sparsity oracle inequalities for the Lasso
    • F. Bunea, A. Tsybakov, and M. H. Wegkamp, "Sparsity oracle inequalities for the Lasso," Elec. Jour. Statist., vol. 1, pp. 169-194, 2007.
    • (2007) Elec. Jour. Statist. , vol.1 , pp. 169-194
    • Bunea, F.1    Tsybakov, A.2    Wegkamp, M.H.3
  • 6
    • 34548275795 scopus 로고    scopus 로고
    • The Dantzig selector: Statistical estimation when n is much larger than - (with discussion)
    • E. Candes and T. Tao, "The Dantzig selector: Statistical estimation when n is much larger than - (with discussion)," Ann. Statist., vol. 35, pp. 2313-2404, 2007.
    • (2007) Ann. Statist. , vol.35 , pp. 2313-2404
    • Candes, E.1    Tao, T.2
  • 7
    • 7044231546 scopus 로고    scopus 로고
    • An iterative thresholding algorithm for linear inverse problems with a sparsity constraint
    • DOI 10.1002/cpa.20042
    • I. Daubechies, M. Defrise, and C. De Mol, "An iterative thresholding algorithm for linear inverse problems with a sparsity constraint," Comm. Pure Appl. Math., vol. 57, pp. 1413-1457, 2004. (Pubitemid 39427442)
    • (2004) Communications on Pure and Applied Mathematics , vol.57 , Issue.11 , pp. 1413-1457
    • Daubechies, I.1    Defrise, M.2    De Mol, C.3
  • 9
    • 0009935552 scopus 로고    scopus 로고
    • Comments on "Wavelets in statistics: A review" by A. Antoniadis
    • J. Fan, "Comments on "Wavelets in statistics: A review" by A. Antoniadis," J. Italian Statist. Assoc., vol. 6, pp. 131-138, 1997.
    • (1997) J. Italian Statist. Assoc. , vol.6 , pp. 131-138
    • Fan, J.1
  • 10
    • 53849089038 scopus 로고    scopus 로고
    • High-dimensional classification using features annealed independence rules
    • J. Fan and Y. Fan, "High-dimensional classification using features annealed independence rules," Ann. Statist., vol. 36, pp. 2605-2637, 2008.
    • (2008) Ann. Statist. , vol.36 , pp. 2605-2637
    • Fan, J.1    Fan, Y.2
  • 11
    • 1542784498 scopus 로고    scopus 로고
    • Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties
    • J. Fan and R. Li, "Variable selection via nonconcave penalized likelihood and its oracle properties," J. Amer. Statist. Assoc., vol. 96, pp. 1348-1360, 2001. (Pubitemid 33695585)
    • (2001) Journal of the American Statistical Association , vol.96 , Issue.456 , pp. 1348-1360
    • Fan, J.1    Li, R.2
  • 12
    • 53849086824 scopus 로고    scopus 로고
    • Sure independence screening for ultrahigh dimensional feature space (with discussion)
    • J. Fan and J. Lv, "Sure independence screening for ultrahigh dimensional feature space (with discussion)," J. Roy. Statist. Soc. Ser. B, vol. 70, pp. 849-911, 2008.
    • (2008) J. Roy. Statist. Soc. Ser. B , vol.70 , pp. 849-911
    • Fan, J.1    Lv, J.2
  • 13
    • 77949352853 scopus 로고    scopus 로고
    • A selective overview of variable selection in high dimensional feature space (invited review article)
    • J. Fan and J. Lv, "A selective overview of variable selection in high dimensional feature space (invited review article)," Statistica Sinica, vol. 20, pp. 101-148, 2010.
    • (2010) Statistica Sinica , vol.20 , pp. 101-148
    • Fan, J.1    Lv, J.2
  • 14
    • 24344502730 scopus 로고    scopus 로고
    • Nonconcave penalized likelihood with a diverging number of parameters
    • DOI 10.1214/009053604000000256
    • J. Fan and H. Peng, "Nonconcave penalized likelihood with diverging number of parameters," Ann. Statist., vol. 32, pp. 928-961, 2004. (Pubitemid 41250289)
    • (2004) Annals of Statistics , vol.32 , Issue.3 , pp. 928-961
    • Fan, J.1    Peng, H.2
  • 15
    • 70449440300 scopus 로고    scopus 로고
    • Ultrahigh dimensional variable selection: Beyond the linear model
    • J. Fan, R. Samworth, and Y. Wu, "Ultrahigh dimensional variable selection: Beyond the linear model," J. Machine Learning Res., vol. 10, pp. 1829-1853, 2009.
    • (2009) J. Machine Learning Res. , vol.10 , pp. 1829-1853
    • Fan, J.1    Samworth, R.2    Wu, Y.3
  • 16
    • 84952149204 scopus 로고
    • A statistical view of some chemometrics regression tools (with discussion)
    • I. E. Frank and J. H. Friedman, "A statistical view of some chemometrics regression tools (with discussion)," Technometrics, vol. 35, pp. 109-148, 1993.
    • (1993) Technometrics , vol.35 , pp. 109-148
    • Frank, I.E.1    Friedman, J.H.2
  • 18
  • 19
    • 68849084522 scopus 로고    scopus 로고
    • Using generalized correlation to effect variable selection in very high dimensional problems
    • P. Hall and H. Miller, "Using generalized correlation to effect variable selection in very high dimensional problems," J. Comput. Graph. Statist., vol. 18, pp. 533-550, 2009.
    • (2009) J. Comput. Graph. Statist. , vol.18 , pp. 533-550
    • Hall, P.1    Miller, H.2
  • 20
    • 68849102598 scopus 로고    scopus 로고
    • Tilting methods for assessing the influence of components in a classifier
    • P. Hall, D. M. Titterington, and J.-H. Xue, "Tilting methods for assessing the influence of components in a classifier," J. Roy. Statist. Soc. Ser. B, vol. 71, pp. 783-803, 2009.
    • (2009) J. Roy. Statist. Soc. Ser. B , vol.71 , pp. 783-803
    • Hall, P.1    Titterington, D.M.2    Xue, J.-H.3
  • 21
    • 84947403595 scopus 로고
    • Probability inequalities for sums of bounded random variables
    • W. Hoeffding, "Probability inequalities for sums of bounded random variables," J. Amer. Statist. Assoc., vol. 58, pp. 13-30, 1963.
    • (1963) J. Amer. Statist. Assoc. , vol.58 , pp. 13-30
    • Hoeffding, W.1
  • 22
    • 49949115667 scopus 로고    scopus 로고
    • Asymptotic properties of bridge estimators in sparse high-dimensional regression models
    • J. Huang, J. Horowitz, and S. Ma, "Asymptotic properties of bridge estimators in sparse high-dimensional regression models," Ann. Statist., vol. 36, pp. 587-613, 2008.
    • (2008) Ann. Statist. , vol.36 , pp. 587-613
    • Huang, J.1    Horowitz, J.2    Ma, S.3
  • 23
    • 68849132263 scopus 로고    scopus 로고
    • Sparse recovery in convex hulls via entropy penalization
    • V. Koltchinskii, "Sparse recovery in convex hulls via entropy penalization," Ann. Statist., vol. 37, pp. 1332-1359, 2009.
    • (2009) Ann. Statist. , vol.37 , pp. 1332-1359
    • Koltchinskii, V.1
  • 24
    • 69949175557 scopus 로고    scopus 로고
    • A unified approach to model selection and sparse recovery using regularized least squares
    • J. Lv and Y. Fan, "A unified approach to model selection and sparse recovery using regularized least squares," Ann. Statist., vol. 37, pp. 3498-3528, 2009.
    • (2009) Ann. Statist. , vol.37 , pp. 3498-3528
    • Lv, J.1    Fan, Y.2
  • 28
    • 33747163541 scopus 로고    scopus 로고
    • High-dimensional graphs and variable selection with the Lasso
    • DOI 10.1214/009053606000000281
    • N. Meinshausen and P. Bühlmann, "High dimensional graphs and variable selection with the Lasso," Ann. Statist., vol. 34, pp. 1436-1462, 2006. (Pubitemid 44231168)
    • (2006) Annals of Statistics , vol.34 , Issue.3 , pp. 1436-1462
    • Meinshausen, N.1    Buhlmann, P.2
  • 30
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the Lasso
    • R. Tibshirani, "Regression shrinkage and selection via the Lasso," J. Roy. Statist. Soc. Ser. B, vol. 58, pp. 267-288, 1996.
    • (1996) J. Roy. Statist. Soc. Ser. B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 31
    • 51049121146 scopus 로고    scopus 로고
    • High-dimensional generalized linear models and the lasso
    • S. van de Geer, "High-dimensional generalized linear models and the lasso," Ann. Statist., vol. 36, pp. 614-645, 2008.
    • (2008) Ann. Statist. , vol.36 , pp. 614-645
    • Van De Geer, S.1
  • 33
    • 84966214356 scopus 로고
    • A short proof and a generalization of Miranda's existence theorem
    • M. N. Vrahatis, "A short proof and a generalization of Miranda's existence theorem," in Proceedings of American Mathematical Society, 1989, vol. 107, pp. 701-703.
    • (1989) Proceedings of American Mathematical Society , vol.107 , pp. 701-703
    • Vrahatis, M.N.1
  • 34
    • 65749083666 scopus 로고    scopus 로고
    • Sharp thresholds for noisy and high-dimensional recovery of sparsity using α -constrained quadratic programming
    • W. J. Wainwright, "Sharp thresholds for noisy and high-dimensional recovery of sparsity using α -constrained quadratic programming," IEEE Transactions on Information Theory, vol. 55, pp. 2183-2202, 2009.
    • (2009) IEEE Transactions on Information Theory , vol.55 , pp. 2183-2202
    • Wainwright, W.J.1
  • 36
    • 77649284492 scopus 로고    scopus 로고
    • Nearly unbiased variable selection under minimax concave penalty
    • C.-H. Zhang, "Nearly unbiased variable selection under minimax concave penalty," Ann. Statist., vol. 38, pp. 894-942, 2010.
    • (2010) Ann. Statist. , vol.38 , pp. 894-942
    • Zhang, C.-H.1
  • 37
    • 50949096321 scopus 로고    scopus 로고
    • The sparsity and bias of the LASSO selection in high-dimensional linear regression
    • C.-H. Zhang and J. Huang, "The sparsity and bias of the LASSO selection in high-dimensional linear regression," Ann. Statist., vol. 36, pp. 1567-1594, 2008.
    • (2008) Ann. Statist. , vol.36 , pp. 1567-1594
    • Zhang, C.-H.1    Huang, J.2
  • 38
    • 33845263263 scopus 로고    scopus 로고
    • On model selection consistency of Lasso
    • P. Zhao and B. Yu, "On model selection consistency of Lasso," J. Machine Learning Res., vol. 7, pp. 2541-2567, 2006.
    • (2006) J. Machine Learning Res. , vol.7 , pp. 2541-2567
    • Zhao, P.1    Yu, B.2
  • 39
    • 33846114377 scopus 로고    scopus 로고
    • The adaptive Lasso and its oracle properties
    • H. Zou, "The adaptive Lasso and its oracle properties," J. Amer. Statist. Assoc., vol. 101, pp. 1418-1429, 2006.
    • (2006) J. Amer. Statist. Assoc. , vol.101 , pp. 1418-1429
    • Zou, H.1
  • 40
    • 51049104549 scopus 로고    scopus 로고
    • One-step sparse estimates in nonconcave penalized likelihood models (with discussion)
    • H. Zou and R. Li, "One-step sparse estimates in nonconcave penalized likelihood models (with discussion)," Ann. Statist., vol. 36, pp. 1509-1566, 2008.
    • (2008) Ann. Statist. , vol.36 , pp. 1509-1566
    • Zou, H.1    Li, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.