메뉴 건너뛰기




Volumn 71, Issue 3, 2009, Pages 671-683

Shrinkage tuning parameter selection with a diverging number of parameters

Author keywords

Bayesian information criterion; Diverging number of parameters; Lasso; Smoothly clipped absolute deviation

Indexed keywords


EID: 66849138434     PISSN: 13697412     EISSN: 14679868     Source Type: Journal    
DOI: 10.1111/j.1467-9868.2008.00693.x     Document Type: Article
Times cited : (375)

References (20)
  • 2
    • 1542784498 scopus 로고    scopus 로고
    • Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties
    • Fan, J. Li, R. (2001) Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Statist. Ass., 96, 1348 1360. (Pubitemid 33695585)
    • (2001) Journal of the American Statistical Association , vol.96 , Issue.456 , pp. 1348-1360
    • Fan, J.1    Li, R.2
  • 3
    • 84878031768 scopus 로고    scopus 로고
    • Statistical challenges with high dimensionality: Feature selection in knowledge discovery
    • In. eds. M. Sanz-Sole. J. Soria. J. L. Varona. J. Verdera. pp. Zurich. European Mathematical Society.
    • Fan, J. Li, R. (2006) Statistical challenges with high dimensionality: feature selection in knowledge discovery. In Proc. Int. Congr. Mathematicians, vol. III (eds M. Sanz-Sole, J. Soria, J. L. Varona J. Verdera pp. 595 622. Zurich : European Mathematical Society.
    • (2006) Proc. Int. Congr. Mathematicians, Vol. III , pp. 595-622
    • Fan, J.1    Li, R.2
  • 4
    • 24344502730 scopus 로고    scopus 로고
    • Nonconcave penalized likelihood with a diverging number of parameters
    • DOI 10.1214/009053604000000256
    • Fan, J. Peng, H. (2004) On non-concave penalized likelihood with diverging number of parameters. Ann. Statist., 32, 928 961. (Pubitemid 41250289)
    • (2004) Annals of Statistics , vol.32 , Issue.3 , pp. 928-961
    • Fan, J.1    Peng, H.2
  • 5
    • 0032361278 scopus 로고    scopus 로고
    • Penalized regression: The bridge versus the LASSO
    • Fu, W. J. (1998) Penalized regression: the bridge versus the LASSO. J. Computnl Graph. Statist., 7, 397 416.
    • (1998) J. Computnl Graph. Statist. , vol.7 , pp. 397-416
    • Fu, W.J.1
  • 6
    • 49949115667 scopus 로고    scopus 로고
    • Asymptotic properties of bridge estimators in sparse high-dimensional regression models
    • Huang, J., Horowitz, J. Ma, S. (2008) Asymptotic properties of bridge estimators in sparse high-dimensional regression models. Ann. Statist., 36, 587 613.
    • (2008) Ann. Statist. , vol.36 , pp. 587-613
    • Huang, J.1    Horowitz, J.2    Ma, S.3
  • 7
    • 66849119923 scopus 로고    scopus 로고
    • Technical Report 374. Department of Statistics and Actuarial Science, University of Iowa. Iowa City. (Available from. .)
    • Huang, J., Ma, S. Zhang, C. H. (2007) Adaptive LASSO for sparse high-dimensional regression models. Technical Report 374. Department of Statistics and Actuarial Science, University of Iowa, Iowa City. (Available from http://www.stat.uiowa.edu/techrep/.)
    • (2007) Adaptive LASSO for Sparse High-dimensional Regression Models
    • Huang, J.1    Ma, S.2    Zhang, C.H.3
  • 8
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz, G. (1978) Estimating the dimension of a model. Ann. Statist., 6, 461 464.
    • (1978) Ann. Statist. , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 9
    • 0642336882 scopus 로고    scopus 로고
    • An asymptotic theory for linear model selection
    • Shao, J. (1997) An asymptotic theory for linear model selection. Statist. Sin., 7, 221 264. (Pubitemid 127473663)
    • (1997) Statistica Sinica , vol.7 , Issue.2 , pp. 221-264
    • Shao, J.1
  • 10
    • 0036012998 scopus 로고    scopus 로고
    • Regression model selection - A residual likelihood approach
    • Shi, P. Tsai, C. L. (2002) Regression model selection - a residual likelihood approach. J. R. Statist. Soc. B, 64, 237 252.
    • (2002) J. R. Statist. Soc. B , vol.64 , pp. 237-252
    • Shi, P.1    Tsai, C.L.2
  • 11
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani, R. (1996) Regression shrinkage and selection via the lasso. J. R. Statist. Soc. B, 58, 267 288.
    • (1996) J. R. Statist. Soc. B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 12
    • 66549114275 scopus 로고    scopus 로고
    • Unified LASSO estimation via least squares approximation
    • Wang, H. Leng, C. (2007) Unified LASSO estimation via least squares approximation. J. Am. Statist. Ass., 101, 1418 1429.
    • (2007) J. Am. Statist. Ass. , vol.101 , pp. 1418-1429
    • Wang, H.1    Leng, C.2
  • 13
    • 33846190566 scopus 로고    scopus 로고
    • Regression coefficient and autoregressive order shrinkage and selection via the lasso
    • Wang, H., Li, G. Tsai, C. L. (2007a) Regression coefficient and autoregressive order shrinkage and selection via the lasso. J. R. Statist. Soc. B, 69, 63 78.
    • (2007) J. R. Statist. Soc. B , vol.69 , pp. 63-78
    • Wang, H.1    Li, G.2    Tsai, C.L.3
  • 14
    • 34548536572 scopus 로고    scopus 로고
    • On the consistency of SCAD tuning parameter selector
    • Wang, H., Li, R. Tsai, C. L. (2007b) On the consistency of SCAD tuning parameter selector. Biometrika, 94, 553 558.
    • (2007) Biometrika , vol.94 , pp. 553-558
    • Wang, H.1    Li, R.2    Tsai, C.L.3
  • 15
    • 66849107432 scopus 로고    scopus 로고
    • SCAD-penalized regression in high-dimensional partially linear models
    • to be published.
    • Xie, H. Huang, J. (2008) SCAD-penalized regression in high-dimensional partially linear models. Ann. Statist., to be published.
    • (2008) Ann. Statist.
    • Xie, H.1    Huang, J.2
  • 16
    • 27944460480 scopus 로고    scopus 로고
    • Can the strengths of AIC and BIC be shared? A conflict between model indentification and regression estimation
    • DOI 10.1093/biomet/92.4.937
    • Yang, Y. (2005) Can the strengths of AIC and BIC be shared?: a conflict between model identification and regression estimation. Biometrika, 92, 937 950. (Pubitemid 41681244)
    • (2005) Biometrika , vol.92 , Issue.4 , pp. 937-950
    • Yang, Y.1
  • 17
    • 34548151636 scopus 로고    scopus 로고
    • Adaptive Lasso for Cox's proportional hazards model
    • DOI 10.1093/biomet/asm037
    • Zhang, H. H. Lu, W. (2007) Adaptive LASSO for Cox's proportional hazard model. Biometrika, 94, 691 703. (Pubitemid 47384259)
    • (2007) Biometrika , vol.94 , Issue.3 , pp. 691-703
    • Zhang, H.H.1    Lu, W.2
  • 18
    • 32544461786 scopus 로고    scopus 로고
    • Consistent linear model selection
    • DOI 10.1016/j.spl.2005.08.020, PII S0167715205003342
    • Zhao, M. Kulasekera, K. B. (2006) Consistent linear model selection. Statist. Probab. Lett., 76, 520 530. (Pubitemid 43230428)
    • (2006) Statistics and Probability Letters , vol.76 , Issue.5 , pp. 520-530
    • Zhao, M.1    Kulasekera, K.B.2
  • 19
    • 33846114377 scopus 로고    scopus 로고
    • The adaptive LASSO and its oracle properties
    • Zou, H. (2006) The adaptive LASSO and its oracle properties. J. Am. Statist. Ass., 101, 1418 1429.
    • (2006) J. Am. Statist. Ass. , vol.101 , pp. 1418-1429
    • Zou, H.1
  • 20
    • 51049104549 scopus 로고    scopus 로고
    • One-step sparse estimates in nonconcave penalized likelihood models (with discussion)
    • Zou, H. Li, R. (2008) One-step sparse estimates in nonconcave penalized likelihood models (with discussion). Ann. Statist., 36, 1509 1566.
    • (2008) Ann. Statist. , vol.36 , pp. 1509-1566
    • Zou, H.1    Li, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.