메뉴 건너뛰기




Volumn , Issue , 2011, Pages 52-60

Precise anytime clustering of noisy sensor data with logarithmic complexity

Author keywords

Algorithms; Experimentation

Indexed keywords

DATA SETS; EXPERIMENTAL EVALUATION; EXPERIMENTATION; LINEAR TIME COMPLEXITY; LOGARITHMIC COMPLEXITY; LOGARITHMIC TIME; MODEL SIZE; NOISY SENSORS; RUNTIMES; SAMPLING RATES; SENSOR DATA; STORAGE RESOURCES; TREE ALGORITHMS;

EID: 80051706229     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2003653.2003659     Document Type: Conference Paper
Times cited : (16)

References (25)
  • 2
    • 85012236181 scopus 로고    scopus 로고
    • A framework for clustering evolving data streams
    • C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu. A framework for clustering evolving data streams. In VLDB, pages 81-92, 2003.
    • (2003) VLDB , pp. 81-92
    • Aggarwal, C.C.1    Han, J.2    Wang, J.3    Yu, P.S.4
  • 3
    • 85011117106 scopus 로고    scopus 로고
    • Anytime measures for top-k algorithms
    • B. Arai, G. Das, D. Gunopulos, and N. Koudas. Anytime measures for top-k algorithms. In VLDB, pages 914-925, 2007.
    • (2007) VLDB , pp. 914-925
    • Arai, B.1    Das, G.2    Gunopulos, D.3    Koudas, N.4
  • 5
    • 33745434639 scopus 로고    scopus 로고
    • Density-based clustering over an evolving data stream with noise
    • F. Cao, M. Ester, W. Qian, and A. Zhou. Density-based clustering over an evolving data stream with noise. In SDM, 2006.
    • (2006) SDM
    • Cao, F.1    Ester, M.2    Qian, W.3    Zhou, A.4
  • 7
    • 1942450879 scopus 로고    scopus 로고
    • Anytime interval-valued outputs for kernel machines: Fast support vector machine classiffication via distance geometry
    • D. DeCoste. Anytime interval-valued outputs for kernel machines: Fast support vector machine classiffication via distance geometry. In ICML, 2002.
    • (2002) ICML
    • Decoste, D.1
  • 8
    • 70450099261 scopus 로고    scopus 로고
    • EDISKCO: Energy efficient distributed in-sensor-network k-center clustering with outliers
    • M. Hassani, E. Müller, and T. Seidl. EDISKCO: energy efficient distributed in-sensor-network k-center clustering with outliers. In Proc. SensorKDD 2009, pages 39-48, 2009.
    • (2009) Proc. SensorKDD 2009 , pp. 39-48
    • Hassani, M.1    Müller, E.2    Seidl, T.3
  • 11
    • 77951189927 scopus 로고    scopus 로고
    • Self-adaptive anytime stream clustering
    • P. Kranen, I. Assent, C. Baldauf, and T. Seidl. Self-adaptive anytime stream clustering. In IEEE ICDM, pages 249-258, 2009.
    • (2009) IEEE ICDM , pp. 249-258
    • Kranen, P.1    Assent, I.2    Baldauf, C.3    Seidl, T.4
  • 12
    • 80051696674 scopus 로고    scopus 로고
    • The clustree: Indexing micro-clusters for anytime stream mining
    • P. Kranen, I. Assent, C. Baldauf, and T. Seidl. The clustree: Indexing micro-clusters for anytime stream mining. In KAIS Journal, 2010.
    • (2010) KAIS Journal
    • Kranen, P.1    Assent, I.2    Baldauf, C.3    Seidl, T.4
  • 14
    • 80051694851 scopus 로고    scopus 로고
    • Hierarchical clustering for real-time stream data with noise
    • to appear
    • P. Kranen, F. Reidl, F. S. Villaamil, and T. Seidl. Hierarchical clustering for real-time stream data with noise. In SSDBM (to appear), 2011.
    • (2011) SSDBM
    • Kranen, P.1    Reidl, F.2    Villaamil, F.S.3    Seidl, T.4
  • 15
    • 68749087011 scopus 로고    scopus 로고
    • Harnessing the strengths of anytime algorithms for constant data streams
    • ECML PKDD Special Issue
    • P. Kranen and T. Seidl. Harnessing the strengths of anytime algorithms for constant data streams. DMKD Journal (19)2, ECML PKDD Special Issue, 2009.
    • (2009) DMKD Journal , vol.2 , Issue.19
    • Kranen, P.1    Seidl, T.2
  • 16
    • 62449204280 scopus 로고    scopus 로고
    • A grid and fractal dimension-based data stream clustering algorithm
    • G. Lin and L. Chen. A grid and fractal dimension-based data stream clustering algorithm. In ISISE, volume 1, pages 66 -70, 2008.
    • (2008) ISISE , vol.1 , pp. 66-70
    • Lin, G.1    Chen, L.2
  • 17
    • 68749121246 scopus 로고    scopus 로고
    • Indexing density models for incremental learning and anytime classiffication on data streams
    • T. Seidl, I. Assent, P. Kranen, R. Krieger, and J. Herrmann. Indexing density models for incremental learning and anytime classiffication on data streams. In EDBT/ICDT, 2009.
    • (2009) EDBT/ICDT
    • Seidl, T.1    Assent, I.2    Kranen, P.3    Krieger, R.4    Herrmann, J.5
  • 18
    • 79951755130 scopus 로고    scopus 로고
    • Polishing the right apple: Anytime classiffication also benefits data streams with constant arrival times
    • J. Shieh and E. Keogh. Polishing the right apple: Anytime classiffication also benefits data streams with constant arrival times. In Proc. of ICDM, 2010.
    • (2010) Proc. of ICDM
    • Shieh, J.1    Keogh, E.2
  • 19
    • 69049112118 scopus 로고    scopus 로고
    • Combining multiple interrelated streams for incremental clustering
    • Z. F. Siddiqui and M. Spiliopoulou. Combining multiple interrelated streams for incremental clustering. In SSDBM, pages 535-552, 2009.
    • (2009) SSDBM , pp. 535-552
    • Siddiqui, Z.F.1    Spiliopoulou, M.2
  • 20
    • 0035788947 scopus 로고    scopus 로고
    • A streaming ensemble algorithm (sea) for large-scale classiffication
    • W. N. Street and Y. Kim. A streaming ensemble algorithm (sea) for large-scale classiffication. In Proc. of the 7th ACM KDD, pages 377-382, 2001.
    • (2001) Proc. of the 7th ACM KDD , pp. 377-382
    • Street, W.N.1    Kim, Y.2
  • 21
    • 72849144638 scopus 로고    scopus 로고
    • Anytime classiffication using the nearest neighbor algorithm with applications to stream mining
    • K. Ueno, X. Xi, E. J. Keogh, and D.-J. Lee. Anytime classiffication using the nearest neighbor algorithm with applications to stream mining. In ICDM, 2006.
    • (2006) ICDM
    • Ueno, K.1    Xi, X.2    Keogh, E.J.3    Lee, D.-J.4
  • 22
    • 77952415079 scopus 로고    scopus 로고
    • Mining concept-drifting data streams using ensemble classifiers
    • H. Wang, W. Fan, P. S. Yu, and J. Han. Mining concept-drifting data streams using ensemble classifiers. In Proc. of the 9th ACM KDD, pages 226-235, 2003.
    • (2003) Proc. of the 9th ACM KDD , pp. 226-235
    • Wang, H.1    Fan, W.2    Yu, P.S.3    Han, J.4
  • 23
    • 35148836033 scopus 로고    scopus 로고
    • Classifying under computational resource constraints: Anytime classiffication using probabilistic estimators
    • Y. Yang, G. I. Webb, K. B. Korb, and K. M. Ting. Classifying under computational resource constraints: anytime classiffication using probabilistic estimators. Machine Learning, 69(1), 2007.
    • (2007) Machine Learning , vol.69 , Issue.1
    • Yang, Y.1    Webb, G.I.2    Korb, K.B.3    Ting, K.M.4
  • 24
    • 80051679865 scopus 로고    scopus 로고
    • Autocannibalistic and anyspace indexing algorithms with application to sensor data mining
    • L. Ye, X. Wang, E. J. Keogh, and A. Mafra-Neto. Autocannibalistic and anyspace indexing algorithms with application to sensor data mining. In SDM, pages 85-96, 2009.
    • (2009) SDM , pp. 85-96
    • Ye, L.1    Wang, X.2    Keogh, E.J.3    Mafra-Neto, A.4
  • 25
    • 0030157145 scopus 로고    scopus 로고
    • BIRCH: An efficient data clustering method for very large databases
    • T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: an efficient data clustering method for very large databases. In SIGMOD, 1996.
    • (1996) SIGMOD
    • Zhang, T.1    Ramakrishnan, R.2    Livny, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.