-
1
-
-
79960610644
-
-
Electron Devices and Materials Symposium, 12-15 July Hsinchu, Taiwan.
-
R. -H. Yuang, J. -L. Shieh, R. -M. Lin, H. -C. Shieh, and J. -I. Chyi, Electron Devices and Materials Symposium, 12-15 July 1994 Hsinchu, Taiwan.
-
(1994)
-
-
Yuang, R.-H.1
Shieh, J.-L.2
Lin, R.-M.3
Shieh, H.-C.4
Chyi, J.-I.5
-
2
-
-
0141952891
-
-
0018-9480, 10.1109/TMTT.2003.817463
-
B. Nabet, A. Cola, X. Chen, and F. Quaranta, IEEE Trans. Microwave Theory Tech. 0018-9480 51, 2063 (2003). 10.1109/TMTT.2003.817463
-
(2003)
IEEE Trans. Microwave Theory Tech.
, vol.51
, pp. 2063
-
-
Nabet, B.1
Cola, A.2
Chen, X.3
Quaranta, F.4
-
3
-
-
0035943358
-
Highly polarized photoluminescence and photodetection from single indium phosphide nanowires
-
DOI 10.1126/science.1062340
-
J. Wang, M. S. Gudiksen, X. Duan, Y. Cui, and C. M. Lieber, Science 0036-8075 293, 1455 (2001). 10.1126/science.1062340 (Pubitemid 32801542)
-
(2001)
Science
, vol.293
, Issue.5534
, pp. 1455-1457
-
-
Wang, J.1
Gudiksen, M.S.2
Duan, X.3
Cui, Y.4
Lieber, C.M.5
-
4
-
-
36248972352
-
InAs/InP radial nanowire heterostructures as high electron mobility devices
-
DOI 10.1021/nl072024a
-
X. Jiang, Q. Xiong, S. Nam, F. Qian, Y. Li, and C. M. Lieber, Nano Lett. 1530-6984 7, 3214 (2007). 10.1021/nl072024a (Pubitemid 350132956)
-
(2007)
Nano Letters
, vol.7
, Issue.10
, pp. 3214-3218
-
-
Jiang, X.1
Xiong, Q.2
Nam, S.3
Qian, F.4
Li, Y.5
Lieber, C.M.6
-
5
-
-
69549110180
-
-
0003-6951, 10.1063/1.3193540
-
S. Thunich, L. Prechtel, D. Spirkoska, G. Abstreiter, A. Fontcuberta i Morral, and A. Holleitner, Appl. Phys. Lett. 0003-6951 95, 083111 (2009). 10.1063/1.3193540
-
(2009)
Appl. Phys. Lett.
, vol.95
, pp. 083111
-
-
Thunich, S.1
Prechtel, L.2
Spirkoska, D.3
Abstreiter, G.4
Fontcuberta Morral, I.A.5
Holleitner, A.6
-
6
-
-
77953313672
-
-
1533-4880, 10.1166/jnn.2010.2157
-
C. Soci, A. Zhang, X. -Y. Bao, H. Kim, Y. Lo, and D. Wang, J. Nanosci. Nanotechnol. 1533-4880 10, 1430 (2010). 10.1166/jnn.2010.2157
-
(2010)
J. Nanosci. Nanotechnol.
, vol.10
, pp. 1430
-
-
Soci, C.1
Zhang, A.2
Bao, X.-Y.3
Kim, H.4
Lo, Y.5
Wang, D.6
-
7
-
-
7544241259
-
-
1530-6984, 10.1021/nl0487267
-
T. Mrtensson, C. P. T. Svensson, B. A. Wacaser, M. W. Larsson, W. Seifert, K. Deppert, A. Gustafsson, L. R. Wallenberg, and L. Samuelson, Nano Lett. 1530-6984 4, 1987 (2004). 10.1021/nl0487267
-
(2004)
Nano Lett.
, vol.4
, pp. 1987
-
-
Mrtensson, T.1
Svensson, C.P.T.2
Wacaser, B.A.3
Larsson, M.W.4
Seifert, W.5
Deppert, K.6
Gustafsson, A.7
Wallenberg, L.R.8
Samuelson, L.9
-
8
-
-
34248140089
-
ZnO nanowire UV photodetectors with high internal gain
-
DOI 10.1021/nl070111x
-
C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, Nano Lett. 1530-6984 7, 1003 (2007). 10.1021/nl070111x (Pubitemid 46717749)
-
(2007)
Nano Letters
, vol.7
, Issue.4
, pp. 1003-1009
-
-
Soci, C.1
Zhang, A.2
Xiang, B.3
Dayeh, S.A.4
Aplin, D.P.R.5
Park, J.6
Bao, X.Y.7
Lo, Y.H.8
Wang, D.9
-
9
-
-
39149140679
-
-
0947-8396, 10.1007/s00339-007-4394-x
-
V. J. Logeeswaran, A. Sarkar, M. S. Islam, N. P. Kobayashi, J. Straznicky, X. Li, W. Wu, S. Mathai, M. R. T. Tan, S. -Y. Wang, and R. S. Williams Appl. Phys. A: Mater. Sci. Process. 0947-8396 91, 1 (2008). 10.1007/s00339-007-4394-x
-
(2008)
Appl. Phys. A: Mater. Sci. Process.
, vol.91
, pp. 1
-
-
Logeeswaran, V.J.1
Sarkar, A.2
Islam, M.S.3
Kobayashi, N.P.4
Straznicky, J.5
Li, X.6
Wu, W.7
Mathai, S.8
Tan, M.R.T.9
Wang, S.-Y.10
Williams, R.S.11
-
10
-
-
79951518531
-
-
1530-6984, 10.1021/nl1036897
-
L. Prechtel, L. Song, S. Manus, D. Schuh, W. Wegscheider, and A. W. Holleitner, Nano Lett. 1530-6984 11, 269 (2011). 10.1021/nl1036897
-
(2011)
Nano Lett.
, vol.11
, pp. 269
-
-
Prechtel, L.1
Song, L.2
Manus, S.3
Schuh, D.4
Wegscheider, W.5
Holleitner, A.W.6
-
11
-
-
0030291514
-
-
1041-1135, 10.1109/68.541571
-
J. -I. Chyi, Y. -J. Chien, R. -H. Yuang, J. -L. Shieh, J. -W. Pan, and J. -S. Chen, IEEE Photon. Technol. Lett. 1041-1135 8, 1525 (1996). 10.1109/68.541571
-
(1996)
IEEE Photon. Technol. Lett.
, vol.8
, pp. 1525
-
-
Chyi, J.-I.1
Chien, Y.-J.2
Yuang, R.-H.3
Shieh, J.-L.4
Pan, J.-W.5
Chen, J.-S.6
-
12
-
-
51849161220
-
-
0003-6951, 10.1063/1.2967877
-
S. Perera, M. A. Fickenscher, H. E. Jackson, L. M. Smith, J. M. Yarrison-Rice, H. J. Joyce, Q. Gao, H. H. Tan, C. Jagadish, and X. Zhang, Appl. Phys. Lett. 0003-6951 93, 053110 (2008). 10.1063/1.2967877
-
(2008)
Appl. Phys. Lett.
, vol.93
, pp. 053110
-
-
Perera, S.1
Fickenscher, M.A.2
Jackson, H.E.3
Smith, L.M.4
Yarrison-Rice, J.M.5
Joyce, H.J.6
Gao, Q.7
Tan, H.H.8
Jagadish, C.9
Zhang, X.10
-
13
-
-
56249138922
-
-
0022-0248, 10.1016/j.jcrysgro.2008.08.039
-
P. Prete, F. Marzo, P. Paiano, N. Lovergine, G. Salviati, L. Lazzarini, and T. Sekiguchi, J. Cryst. Growth 0022-0248 310, 5114 (2008). 10.1016/j.jcrysgro.2008.08.039
-
(2008)
J. Cryst. Growth
, vol.310
, pp. 5114
-
-
Prete, P.1
Marzo, F.2
Paiano, P.3
Lovergine, N.4
Salviati, G.5
Lazzarini, L.6
Sekiguchi, T.7
-
14
-
-
77953577593
-
-
0003-6951, 10.1063/1.3441404
-
G. Chen, E. M. Gallo, J. Burger, B. Nabet, A. Cola, P. Prete, N. Lovergine, and J. E. Spanier, Appl. Phys. Lett. 0003-6951 96, 223107 (2010). 10.1063/1.3441404
-
(2010)
Appl. Phys. Lett.
, vol.96
, pp. 223107
-
-
Chen, G.1
Gallo, E.M.2
Burger, J.3
Nabet, B.4
Cola, A.5
Prete, P.6
Lovergine, N.7
Spanier, J.E.8
-
16
-
-
79960603378
-
-
The calculation of responsivity includes the full diameter of the core/shell nanowire (175 nm).
-
The calculation of responsivity includes the full diameter of the core/shell nanowire (175 nm).
-
-
-
-
17
-
-
78649314045
-
-
0003-6951, 10.1063/1.3519980
-
O. Demichel, M. Heiss, J. Bleuse, H. Mariette, and A. Fontcuberta i Morral, Appl. Phys. Lett. 0003-6951 97, 201907 (2010). 10.1063/1.3519980
-
(2010)
Appl. Phys. Lett.
, vol.97
, pp. 201907
-
-
Demichel, O.1
Heiss, M.2
Bleuse, J.3
Mariette, H.4
Fontcuberta Morral I, A.5
-
18
-
-
79960603074
-
-
The calculation of external quantum efficiency assumed a 200 μm laser spot diameter and included the shell and capping layer. Quantum efficiency was determined by evaluating the incident photons in a single pulse and comparing that value to the integrated high-speed response, assuming the measured signal dropped across a bias-T with a characteristic impedance of 50.
-
The calculation of external quantum efficiency assumed a 200 μm laser spot diameter and included the shell and capping layer. Quantum efficiency was determined by evaluating the incident photons in a single pulse and comparing that value to the integrated high-speed response, assuming the measured signal dropped across a bias-T with a characteristic impedance of 50.
-
-
-
|