메뉴 건너뛰기




Volumn 44, Issue 4, 2011, Pages 529-535

An efficient statistical feature selection approach for classification of gene expression data

Author keywords

Cancer diagnosis and prediction; Classification; Feature selection; Gene selection

Indexed keywords

BASIC PRINCIPLES; CANCER DIAGNOSIS AND PREDICTION; DIFFUSE LARGE B-CELL LYMPHOMA; EFFECTIVE RANGE; EFFICIENT FEATURE SELECTIONS; EVALUATION MEASURES; FEATURE SELECTION ALGORITHM; FEATURE SELECTION METHODS; FEATURE SUBSET; GENE EXPRESSION DATA; GENE EXPRESSION DATASETS; GENE SELECTION; HIGHER WEIGHT; INFORMATIVE GENES; LUNG CANCER; NAVE BAYES CLASSIFIERS; PROSTATE CANCERS; RELEVANCE AND REDUNDANCIES; ROBUST FEATURE SELECTION; SEARCH STRATEGIES; STATISTICAL FEATURES;

EID: 79960562935     PISSN: 15320464     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jbi.2011.01.001     Document Type: Article
Times cited : (144)

References (53)
  • 1
    • 0025725905 scopus 로고
    • Instance-based learning algorithms
    • Aha D., Kibler D. Instance-based learning algorithms. Mach Learn 1991, 6:37-66.
    • (1991) Mach Learn , vol.6 , pp. 37-66
    • Aha, D.1    Kibler, D.2
  • 2
    • 0034598746 scopus 로고    scopus 로고
    • Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling
    • Alizadeh A.A., et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 2000, 403:503-511.
    • (2000) Nature , vol.403 , pp. 503-511
    • Alizadeh, A.A.1
  • 3
    • 0033536012 scopus 로고    scopus 로고
    • Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
    • Alon U., et al. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc Natl Acad Sci USA 1999, 96:6745-6750.
    • (1999) Proc Natl Acad Sci USA , vol.96 , pp. 6745-6750
    • Alon, U.1
  • 4
    • 18544375333 scopus 로고    scopus 로고
    • MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia
    • Armstrong S.A., et al. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet 2002, 30:41-47.
    • (2002) Nat Genet , vol.30 , pp. 41-47
    • Armstrong, S.A.1
  • 5
    • 0034948896 scopus 로고    scopus 로고
    • A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes
    • Baldi P., Long A. A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes. Bioinformatics 2001, 17:509-516.
    • (2001) Bioinformatics , vol.17 , pp. 509-516
    • Baldi, P.1    Long, A.2
  • 6
    • 0033692876 scopus 로고    scopus 로고
    • Tissue classification with gene expression profiles
    • Ben-Dor A., et al. Tissue classification with gene expression profiles. J Comput Biol 2000, 7:559-584.
    • (2000) J Comput Biol , vol.7 , pp. 559-584
    • Ben-Dor, A.1
  • 7
    • 0035923521 scopus 로고    scopus 로고
    • Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses
    • Bhattacharjee A., et al. Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc Natl Acad Sci USA 2001, 98:13790-13795.
    • (2001) Proc Natl Acad Sci USA , vol.98 , pp. 13790-13795
    • Bhattacharjee, A.1
  • 8
    • 33644747547 scopus 로고    scopus 로고
    • A new approach: interrelated two way clustering of gene expression data
    • Chandra B., et al. A new approach: interrelated two way clustering of gene expression data. Stat Methodol 2006, 3:93-102.
    • (2006) Stat Methodol , vol.3 , pp. 93-102
    • Chandra, B.1
  • 9
    • 38149139431 scopus 로고    scopus 로고
    • Robust approach for estimating probabilities in Naive-Bayes classifier. Lecture notes in computer science (LNCS).
    • Chandra B. Robust approach for estimating probabilities in Naive-Bayes classifier. Lecture notes in computer science (LNCS), vol. 4815; 2007. p. 11-6.
    • (2007) , vol.4815 , pp. 11-6
    • Chandra, B.1
  • 10
    • 84856309848 scopus 로고    scopus 로고
    • LIBSVM: a library for support vector machines; .
    • Chang CC, Lin CJ. LIBSVM: a library for support vector machines; 2001. http://www.csie.ntu.edu.tw/cjlin/libsvm.
    • (2001)
    • Chang, C.C.1    Lin, C.J.2
  • 12
    • 0035014847 scopus 로고    scopus 로고
    • Multi-class protein fold recognition using support vector machines and neural networks
    • Ding C., Dubchak I. Multi-class protein fold recognition using support vector machines and neural networks. Bioinformatics 2001, 17:349-358.
    • (2001) Bioinformatics , vol.17 , pp. 349-358
    • Ding, C.1    Dubchak, I.2
  • 13
    • 17644384367 scopus 로고    scopus 로고
    • Minimum redundancy feature selection from microarray gene expression data
    • Ding C., Peng H. Minimum redundancy feature selection from microarray gene expression data. J Bioinform Comput Biol 2005, 3:185-205.
    • (2005) J Bioinform Comput Biol , vol.3 , pp. 185-205
    • Ding, C.1    Peng, H.2
  • 14
    • 0031269184 scopus 로고    scopus 로고
    • On the optimality of the simple Bayesian classifier under zero-one loss
    • Domingos P., Pazzani M. On the optimality of the simple Bayesian classifier under zero-one loss. Mach Learn 1997, 29:103-130.
    • (1997) Mach Learn , vol.29 , pp. 103-130
    • Domingos, P.1    Pazzani, M.2
  • 15
    • 0001938244 scopus 로고
    • Supervised and unsupervised discretization of continuous features. In: Proc. 12th int. conf. on machine learning.
    • Dougherty J et al. Supervised and unsupervised discretization of continuous features. In: Proc. 12th int. conf. on machine learning; 1995. p. 194-202.
    • (1995) , pp. 194-202
    • Dougherty, J.1
  • 16
    • 79960562936 scopus 로고    scopus 로고
    • Feature subset selection and order identification for unsupervised learning. In: Proc. 17th int. conf. on machine learning.
    • Dy JG, Brodley CE. Feature subset selection and order identification for unsupervised learning. In: Proc. 17th int. conf. on machine learning; 2005. p. 247-54.
    • (2005) , pp. 247-54
    • Dy, J.G.1    Brodley, C.E.2
  • 17
    • 64049106891 scopus 로고    scopus 로고
    • A sequential feature extraction approach for nave Bayes classification
    • Fan L., et al. A sequential feature extraction approach for nave Bayes classification. Expert Syst Appl 2009, 36(6):9919-9923.
    • (2009) Expert Syst Appl , vol.36 , Issue.6 , pp. 9919-9923
    • Fan, L.1
  • 18
    • 33645643565 scopus 로고    scopus 로고
    • A two-sample Bayesian t-test for microarray data
    • Fox R., Dimmic M. A two-sample Bayesian t-test for microarray data. BMC Bioinform 2006, 7:126.
    • (2006) BMC Bioinform , vol.7 , pp. 126
    • Fox, R.1    Dimmic, M.2
  • 19
    • 0031276011 scopus 로고    scopus 로고
    • Bayesian network classifiers
    • Friedman N., et al. Bayesian network classifiers. Mach Learn 1997, 29:131-163.
    • (1997) Mach Learn , vol.29 , pp. 131-163
    • Friedman, N.1
  • 20
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: class discovery and class prediction by gene expression monitoring
    • Golub T.R., et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 1999, 286:531-537.
    • (1999) Science , vol.286 , pp. 531-537
    • Golub, T.R.1
  • 21
    • 0036735386 scopus 로고    scopus 로고
    • Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma
    • Gordon G.J., et al. Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma. Cancer Res 2002, 62:4963-4967.
    • (2002) Cancer Res , vol.62 , pp. 4963-4967
    • Gordon, G.J.1
  • 22
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon I., et al. Gene selection for cancer classification using support vector machines. Mach Learn 2002, 46:389-422.
    • (2002) Mach Learn , vol.46 , pp. 389-422
    • Guyon, I.1
  • 23
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon I., Elisseeff A. An introduction to variable and feature selection. J Mach Learn Res 2003, 3:1157-1182.
    • (2003) J Mach Learn Res , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 25
    • 60849106319 scopus 로고    scopus 로고
    • An expert system to classify microarray gene expression data using gene selection by decision tree
    • Horng J.T., et al. An expert system to classify microarray gene expression data using gene selection by decision tree. Expert Syst Appl 2009, 36(5):9072-9081.
    • (2009) Expert Syst Appl , vol.36 , Issue.5 , pp. 9072-9081
    • Horng, J.T.1
  • 26
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multi-class support vector machines
    • Hsu C.W., Lin C.J. A comparison of methods for multi-class support vector machines. IEEE Trans Neural Netw 2002, 13:415-425.
    • (2002) IEEE Trans Neural Netw , vol.13 , pp. 415-425
    • Hsu, C.W.1    Lin, C.J.2
  • 27
    • 34447343762 scopus 로고    scopus 로고
    • A hybrid genetic algorithm for feature selection wrapper based on mutual information
    • Huang J., et al. A hybrid genetic algorithm for feature selection wrapper based on mutual information. Pattern Recognit Lett 2007, 28:1825-1844.
    • (2007) Pattern Recognit Lett , vol.28 , pp. 1825-1844
    • Huang, J.1
  • 28
    • 33746489367 scopus 로고    scopus 로고
    • An assessment of recently published gene expression data analyses: reporting experimental design and statistical factors
    • Jafari P., Azuaje F. An assessment of recently published gene expression data analyses: reporting experimental design and statistical factors. BMC Med Inform Decis Mak 2006, 6:27.
    • (2006) BMC Med Inform Decis Mak , vol.6 , pp. 27
    • Jafari, P.1    Azuaje, F.2
  • 29
    • 85146422424 scopus 로고
    • A practical approach to feature selection. In: Proc. 9th int. conf. on machine learning.
    • Kira K, Rendell LA. A practical approach to feature selection. In: Proc. 9th int. conf. on machine learning; 1992. p. 249-56.
    • (1992) , pp. 249-56
    • Kira, K.1    Rendell, L.A.2
  • 30
    • 0031381525 scopus 로고    scopus 로고
    • Wrapper for feature selection
    • Kohavi R., John G. Wrapper for feature selection. Artif Intell 1997, 97:273-324.
    • (1997) Artif Intell , vol.97 , pp. 273-324
    • Kohavi, R.1    John, G.2
  • 31
    • 84992726552 scopus 로고
    • Estimating features: analysis and extension of RELIEF. In: Proc. 6th European conf. on machine learning.
    • Kononenko I. Estimating features: analysis and extension of RELIEF. In: Proc. 6th European conf. on machine learning; 1994. p. 171-82.
    • (1994) , pp. 171-82
    • Kononenko, I.1
  • 32
    • 0036139278 scopus 로고    scopus 로고
    • Gene selection for sample classification based on gene expression data: study of sensitivity to choice of parameters of the GA/KNN method
    • Li L., et al. Gene selection for sample classification based on gene expression data: study of sensitivity to choice of parameters of the GA/KNN method. Bioinformatics 2001, 17:1131-1142.
    • (2001) Bioinformatics , vol.17 , pp. 1131-1142
    • Li, L.1
  • 33
    • 60249097470 scopus 로고    scopus 로고
    • Kernel based nonlinear dimensionality reduction for microarray gene expression data analysis
    • Li X., Shu L. Kernel based nonlinear dimensionality reduction for microarray gene expression data analysis. Expert Syst Appl 2009, 36(4):7644-7650.
    • (2009) Expert Syst Appl , vol.36 , Issue.4 , pp. 7644-7650
    • Li, X.1    Shu, L.2
  • 35
    • 0029503525 scopus 로고
    • Chi2: feature selection and discretization of numeric attributes. In: Proc. 7th international conference on tools with artificial intelligence, Herndon, VA.
    • Liu H, Setiono R. Chi2: feature selection and discretization of numeric attributes. In: Proc. 7th international conference on tools with artificial intelligence, Herndon, VA; 1995. p. 388-91.
    • (1995) , pp. 388-91
    • Liu, H.1    Setiono, R.2
  • 36
    • 0038021028 scopus 로고    scopus 로고
    • A comparative study on feature selection and classification methods using gene expression profiles and proteomic patterns
    • Liu H., et al. A comparative study on feature selection and classification methods using gene expression profiles and proteomic patterns. Genome Inform 2002, 13:51-60.
    • (2002) Genome Inform , vol.13 , pp. 51-60
    • Liu, H.1
  • 37
    • 74649083315 scopus 로고    scopus 로고
    • Ensemble gene selection by grouping for microarray data classification
    • Liu H., et al. Ensemble gene selection by grouping for microarray data classification. J Biomed Inform 2010, 43:81-87.
    • (2010) J Biomed Inform , vol.43 , pp. 81-87
    • Liu, H.1
  • 38
    • 0037623370 scopus 로고    scopus 로고
    • Cancer classification using gene expression data
    • Lu Y., Han J. Cancer classification using gene expression data. Inform Syst 2003, 28(4):243-268.
    • (2003) Inform Syst , vol.28 , Issue.4 , pp. 243-268
    • Lu, Y.1    Han, J.2
  • 39
    • 0037245772 scopus 로고    scopus 로고
    • Genetic algorithms applied to multi-class prediction for the analysis of gene expression data
    • Ooi C., Tan P. Genetic algorithms applied to multi-class prediction for the analysis of gene expression data. Bioinformatics 2003, 19:37-44.
    • (2003) Bioinformatics , vol.19 , pp. 37-44
    • Ooi, C.1    Tan, P.2
  • 40
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy
    • Peng H., et al. Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 2005, 27:1226-1238.
    • (2005) IEEE Trans Pattern Anal Mach Intell , vol.27 , pp. 1226-1238
    • Peng, H.1
  • 41
    • 74649087307 scopus 로고    scopus 로고
    • A novel feature selection approach for biomedical data classification
    • Peng Y., et al. A novel feature selection approach for biomedical data classification. J Biomed Inform 2010, 43:15-23.
    • (2010) J Biomed Inform , vol.43 , pp. 15-23
    • Peng, Y.1
  • 42
    • 0028547556 scopus 로고
    • Floating search methods in feature selection
    • Pudil P., et al. Floating search methods in feature selection. Pattern Recognit Lett 1994, 15:1119-1125.
    • (1994) Pattern Recognit Lett , vol.15 , pp. 1119-1125
    • Pudil, P.1
  • 43
    • 33744584654 scopus 로고
    • Induction of decision trees
    • Quinlan J.R. Induction of decision trees. Mach Learn 1986, 81-106.
    • (1986) Mach Learn , pp. 81-106
    • Quinlan, J.R.1
  • 45
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • Saeys Y., et al. A review of feature selection techniques in bioinformatics. Bioinformatics 2007, 23:25072517.
    • (2007) Bioinformatics , vol.23 , pp. 25072517
    • Saeys, Y.1
  • 46
    • 60049087512 scopus 로고    scopus 로고
    • New gene selection method for multiclass tumor classification by class centroid
    • Shen Q., et al. New gene selection method for multiclass tumor classification by class centroid. J Biomed Inform 2009, 42:59-65.
    • (2009) J Biomed Inform , vol.42 , pp. 59-65
    • Shen, Q.1
  • 47
    • 19044391072 scopus 로고    scopus 로고
    • Gene expression correlates of clinical prostate cancer behavior
    • Singh D., et al. Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 2002, 1:203-209.
    • (2002) Cancer Cell , vol.1 , pp. 203-209
    • Singh, D.1
  • 49
    • 34248550574 scopus 로고    scopus 로고
    • Two-stage classification methods for microarray data
    • Wong T.T., Hsu C.H. Two-stage classification methods for microarray data. Expert Syst Appl 2008, 34:375-383.
    • (2008) Expert Syst Appl , vol.34 , pp. 375-383
    • Wong, T.T.1    Hsu, C.H.2
  • 50
    • 0035184851 scopus 로고    scopus 로고
    • Biomarker identification by feature wrappers
    • Xiong M., et al. Biomarker identification by feature wrappers. Genome Res 2001, 11:1878-1887.
    • (2001) Genome Res , vol.11 , pp. 1878-1887
    • Xiong, M.1
  • 51
    • 79960564525 scopus 로고    scopus 로고
    • A comparative study of discretization methods for Naive-Bayes classifiers. In: Proc. pacific rim knowledge acquisition workshop, Japan.
    • Yang Y, Webbu G. A comparative study of discretization methods for Naive-Bayes classifiers. In: Proc. pacific rim knowledge acquisition workshop, Japan; 2002. p. 159-73.
    • (2002) , pp. 159-73
    • Yang, Y.1    Webbu, G.2
  • 52
    • 52249109156 scopus 로고    scopus 로고
    • Gene selection algorithm by combining reliefF and mRMR
    • Zhang Y., et al. Gene selection algorithm by combining reliefF and mRMR. BMC Genom 2007, 9(Suppl 2):S27.
    • (2007) BMC Genom , vol.9 , Issue.SUPPL. 2
    • Zhang, Y.1
  • 53
    • 4744364173 scopus 로고    scopus 로고
    • Cancer classification and prediction using logistic regression with Bayesian gene selection
    • Zhoua X., et al. Cancer classification and prediction using logistic regression with Bayesian gene selection. J Biomed Inform 2004, 37:249-259.
    • (2004) J Biomed Inform , vol.37 , pp. 249-259
    • Zhoua, X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.