메뉴 건너뛰기




Volumn 22, Issue 7, 2011, Pages 1046-1060

Analysis and compensation of the effects of analog VLSI arithmetic on the LMS algorithm

Author keywords

Analog very large scale integration; least mean square algorithm; on chip learning; silicon neural networks

Indexed keywords

ANALOG HARDWARE; ANALOG NEURAL NETWORK; ANALOG VERY LARGE SCALE INTEGRATION; ANALOG VLSI; ARITHMETIC CIRCUIT; CALIBRATION TECHNIQUES; CHARGE LEAKAGE; COMPLEMENTARY METAL OXIDE SEMICONDUCTORS; CONVERGENCE PROPERTIES; DESIGN GUIDELINES; DEVICE MISMATCH; DIE AREA; DIGITAL COUNTERPARTS; LEAST MEAN SQUARE ALGORITHMS; LINEAR PERCEPTRONS; LMS ALGORITHMS; MATHEMATICAL ANALYSIS; MIXED SIGNAL; ON CHIPS; ON-CHIP LEARNING; PERCEPTRON; SPECIFIC EFFECTS;

EID: 79960117899     PISSN: 10459227     EISSN: None     Source Type: Journal    
DOI: 10.1109/TNN.2011.2136358     Document Type: Article
Times cited : (16)

References (39)
  • 1
    • 63049093583 scopus 로고    scopus 로고
    • Comparison between analog and digital neural network implementations for range-finding applications
    • Mar.
    • L. Gatet, H. Tap-Beteille, and F. Bony, "Comparison between analog and digital neural network implementations for range-finding applications," IEEE Trans. Neural Netw., vol. 20, no. 3, pp. 460-470, Mar. 2009.
    • (2009) IEEE Trans. Neural Netw. , vol.20 , Issue.3 , pp. 460-470
    • Gatet, L.1    Tap-Beteille, H.2    Bony, F.3
  • 2
    • 77953113958 scopus 로고    scopus 로고
    • Realization of the conscience mechanism in CMOS implementation of winner-takesall self-organizing neural networks
    • Jun.
    • R. Dlugosz, T. Talaska, W. Pedrycz, and R. Wojtyna, "Realization of the conscience mechanism in CMOS implementation of winner-takesall self-organizing neural networks," IEEE Trans. Neural Netw., vol. 21, no. 6, pp. 961-971, Jun. 2010.
    • (2010) IEEE Trans. Neural Netw. , vol.21 , Issue.6 , pp. 961-971
    • Dlugosz, R.1    Talaska, T.2    Pedrycz, W.3    Wojtyna, R.4
  • 3
    • 77955292736 scopus 로고    scopus 로고
    • Comparative study on analog and digital neural networks
    • Jul.
    • V. Kakkar, "Comparative study on analog and digital neural networks," Int. J. Comput. Sci. Netw. Secur., vol. 9, no. 7, pp. 14-21z, Jul. 2009.
    • (2009) Int. J. Comput. Sci. Netw. Secur. , vol.9 , Issue.7
    • Kakkar, V.1
  • 4
    • 77956344864 scopus 로고    scopus 로고
    • Real-time simulation of biologically realistic stochastic neurons in VLSI
    • Sep.
    • H. Chen, S. Saighi, L. Buhry, and S. Renaud, "Real-time simulation of biologically realistic stochastic neurons in VLSI," IEEE Trans. Neural Netw., vol. 21, no. 9, pp. 1511-1517, Sep. 2010.
    • (2010) IEEE Trans. Neural Netw. , vol.21 , Issue.9 , pp. 1511-1517
    • Chen, H.1    Saighi, S.2    Buhry, L.3    Renaud, S.4
  • 7
    • 0000726115 scopus 로고
    • The effects of precision constraints in a backpropagation learning network
    • P. W. Hollis, J. S. Harper, and J. J. Paulos, "The effects of precision constraints in a backpropagation learning network," Neural Comput., vol. 2, no. 3, pp. 363-373, 1990.
    • (1990) Neural Comput. , vol.2 , Issue.3 , pp. 363-373
    • Hollis, P.W.1    Harper, J.S.2    Paulos, J.J.3
  • 8
    • 0025838955 scopus 로고
    • Back-propagation learning and nonidealities in analog neural network hardware
    • Jan.
    • R. C. Frye, E. A. Rietman, and C. C. Wong, "Back-propagation learning and nonidealities in analog neural network hardware," IEEE Trans. Neural Netw., vol. 2, no. 1, pp. 110-117, Jan. 1991.
    • (1991) IEEE Trans. Neural Netw. , vol.2 , Issue.1 , pp. 110-117
    • Frye, R.C.1    Rietman, E.A.2    Wong, C.C.3
  • 9
    • 0026868153 scopus 로고
    • Analog CMOS implementation of a multilayer perceptron with nonlinear synapses
    • May
    • J. B. Lont and W. Guggenbiihl, "Analog CMOS implementation of a multilayer perceptron with nonlinear synapses," IEEE Trans. Neural Netw., vol. 3, no. 3, pp. 457-465, May 1992.
    • (1992) IEEE Trans. Neural Netw. , vol.3 , Issue.3 , pp. 457-465
    • Lont, J.B.1    Guggenbiihl, W.2
  • 10
    • 0029378529 scopus 로고
    • Tolerance to analog hardware of onchip learning in backpropagation networks
    • Sep.
    • B. K. Dolenko and H. C. Card, "Tolerance to analog hardware of onchip learning in backpropagation networks," IEEE Trans. Neural Netw., vol. 6, no. 5, pp. 1045-1052, Sep. 1995.
    • (1995) IEEE Trans. Neural Netw. , vol.6 , Issue.5 , pp. 1045-1052
    • Dolenko, B.K.1    Card, H.C.2
  • 11
    • 0031095256 scopus 로고    scopus 로고
    • Toward a general-purpose analog VLSI neural network with on-chip learning
    • PII S104592279701758X
    • A. J. Montalvo, R. S. Gyurksic, and J. J. Paulos, "Toward a generalpurpose analog VLSI neural network with on-chip learning," IEEE Trans. Neural Netw., vol. 8, no. 2, pp. 413-423, Mar. 1997. (Pubitemid 127765134)
    • (1997) IEEE Transactions on Neural Networks , vol.8 , Issue.2 , pp. 413-423
    • Montalvo, A.J.1    Gyurcsik, R.S.2    Paulos, J.J.3
  • 12
    • 0030244205 scopus 로고    scopus 로고
    • An analogue radial basis function circuit incorporating floating-gate devices
    • G. Marshall and S. Collins, "An analogue radial basis function circuit incorporating floating-gate devices," Analog Integr. Circuits Signal Process., vol. 11, no. 1, pp. 21-34, 1996.
    • (1996) Analog Integr. Circuits Signal Process. , vol.11 , Issue.1 , pp. 21-34
    • Marshall, G.1    Collins, S.2
  • 13
    • 0036565018 scopus 로고    scopus 로고
    • Competitive learning with floatinggate circuits
    • May
    • D. Hsu, M. Figueroa, and C. Diorio, "Competitive learning with floatinggate circuits," IEEE Trans. Neural Netw., vol. 13, no. 3, pp. 732-744, May 2002.
    • (2002) IEEE Trans. Neural Netw. , vol.13 , Issue.3 , pp. 732-744
    • Hsu, D.1    Figueroa, M.2    Diorio, C.3
  • 14
    • 65449136000 scopus 로고    scopus 로고
    • Design and analog VLSI implementation of neural network architecture for signal processing
    • C. Prasanna and S. Pinjare, "Design and analog VLSI implementation of neural network architecture for signal processing," Eur. J. Sci. Res., vol. 27, no. 2, pp. 199-216, 2009.
    • (2009) Eur. J. Sci. Res. , vol.27 , Issue.2 , pp. 199-216
    • Prasanna, C.1    Pinjare, S.2
  • 15
    • 0016987049 scopus 로고
    • Stationary and nonstationary learning characteristics of the LMS adaptive filter
    • Aug.
    • B. Widrow, J. M. McCool, M. G. Larimore, and C. R. Johnson, "Stationary and nonstationary learning characteristics of the LMS adaptive filter," Proc. IEEE, vol. 64, no. 8, pp. 1151-1162, Aug. 1976.
    • (1976) Proc. IEEE , vol.64 , Issue.8 , pp. 1151-1162
    • Widrow, B.1    McCool, J.M.2    Larimore, M.G.3    Johnson, C.R.4
  • 16
    • 77953085509 scopus 로고    scopus 로고
    • Adaptive FIR neural model for centroid learning in self-organizing maps
    • Jun.
    • M. Tucci and M. Raugi, "Adaptive FIR neural model for centroid learning in self-organizing maps," IEEE Trans. Neural Netw., vol. 21, no. 6, pp. 948-960, Jun. 2010.
    • (2010) IEEE Trans. Neural Netw. , vol.21 , Issue.6 , pp. 948-960
    • Tucci, M.1    Raugi, M.2
  • 17
    • 78649293483 scopus 로고    scopus 로고
    • Use of adaptive filtering for noise reduction in communications systems
    • Sep.
    • R. Martinek and J. Zidek, "Use of adaptive filtering for noise reduction in communications systems," in Proc. Int. Conf. Appl. Electron., Sep. 2010, pp. 1-6.
    • (2010) Proc. Int. Conf. Appl. Electron. , pp. 1-6
    • Martinek, R.1    Zidek, J.2
  • 19
    • 0027663185 scopus 로고
    • Anti-Hebbian learning in topologically constrained linear networks: A tutorial
    • Sep.
    • F. Palmieri, J. Zhu, and C. Chang, "Anti-Hebbian learning in topologically constrained linear networks: A tutorial," IEEE Trans. Neural Netw., vol. 4, no. 5, pp. 748-761, Sep. 1993.
    • (1993) IEEE Trans. Neural Netw. , vol.4 , Issue.5 , pp. 748-761
    • Palmieri, F.1    Zhu, J.2    Chang, C.3
  • 22
    • 33749359467 scopus 로고    scopus 로고
    • Adaptive signal processing in mixed-signal VLSI with anti-Hebbian learning
    • Karlsruhe, Germany, Mar.
    • M. Figueroa, E. Matamala, G. Carvajal, and S. Bridges, "Adaptive signal processing in mixed-signal VLSI with anti-Hebbian learning," in Proc. IEEE Comput. Soc. Annu. Symp. VLSI, Karlsruhe, Germany, Mar. 2006, pp. 133-140.
    • (2006) Proc. IEEE Comput. Soc. Annu. Symp. VLSI , pp. 133-140
    • Figueroa, M.1    Matamala, E.2    Carvajal, G.3    Bridges, S.4
  • 25
    • 21644456778 scopus 로고    scopus 로고
    • Assesment of the efficiency of the LMS algorithm based on spectral information
    • Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers
    • A. Flores and B. Widrow, "Assessment of the efficiency of the LMS algorithm based on spectral information," in Proc. 38th Asilomar Conf. Signals, Syst. Comput., vol. 1. Pacific Grove, CA, Nov. 2004, pp. 120-124. (Pubitemid 40930585)
    • (2004) Conference Record - Asilomar Conference on Signals, Systems and Computers , vol.1 , pp. 120-124
    • Flores, A.1    Widrow, B.2
  • 27
    • 0025757526 scopus 로고
    • Weight decay and resolution effects in feedforward artificial neural networks
    • Jan.
    • D. B. Mundie and L. W. Massengill, "Weight decay and resolution effects in feedforward artificial neural networks," IEEE Trans. Neural Netw., vol. 2, no. 1, pp. 168-170, Jan. 1991.
    • (1991) IEEE Trans. Neural Netw. , vol.2 , Issue.1 , pp. 168-170
    • Mundie, D.B.1    Massengill, L.W.2
  • 28
    • 0027629615 scopus 로고
    • Synaptic weight noise during multilayer perceptron training: Fault tolerance and training improvements
    • Jul.
    • A. F. Murray and P. J. Edwards, "Synaptic weight noise during multilayer perceptron training: Fault tolerance and training improvements," IEEE Trans. Neural Netw., vol. 4, no. 4, pp. 722-725, Jul. 1993.
    • (1993) IEEE Trans. Neural Netw. , vol.4 , Issue.4 , pp. 722-725
    • Murray, A.F.1    Edwards, P.J.2
  • 31
    • 0033685065 scopus 로고    scopus 로고
    • Hardware implementation of a PCA learning network by an asynchronous PDM digital circuit
    • Y. Hirai and K. Nishizawa, "Hardware implementation of a PCA learning network by an asynchronous PDM digital circuit," in Proc. IEEE-INNS-ENNS Int. Joint Conf. Neural Netw., vol. 2. 2000, pp. 65-70.
    • (2000) Proc. IEEE-INNS-ENNS Int. Joint Conf. Neural Netw. , vol.2 , pp. 65-70
    • Hirai, Y.1    Nishizawa, K.2
  • 33
    • 0002205089 scopus 로고    scopus 로고
    • Analog VLSI implementation of self-learning neural networks
    • Norwell, MA: Kluwer
    • T. Morie, "Analog VLSI implementation of self-learning neural networks," in Learning in Silicon. Norwell, MA: Kluwer, 1999, pp. 214-242.
    • (1999) Learning in Silicon , pp. 214-242
    • Morie, T.1
  • 36
    • 79960135015 scopus 로고    scopus 로고
    • Learning spike-based correlations and conditional probabilities in silicon
    • Vancouver, BC, Canada
    • A. Shon, D. Hsu, and C. Diorio, "Learning spike-based correlations and conditional probabilities in silicon," in Proc. Neural Inf. Process. Syst., Vancouver, BC, Canada, 2001, pp. 1-8.
    • (2001) Proc. Neural Inf. Process. Syst. , pp. 1-8
    • Shon, A.1    Hsu, D.2    Diorio, C.3
  • 38
    • 71949095374 scopus 로고    scopus 로고
    • Blind source-separation in mixed-signal VLSI
    • W. Valenzuela, G. Carvajal, and M. Figueroa, "Blind source-separation in mixed-signal VLSI," Neural Netw. World, vol. 19, no. 5, pp. 641-656, 2009.
    • (2009) Neural Netw. World , vol.19 , Issue.5 , pp. 641-656
    • Valenzuela, W.1    Carvajal, G.2    Figueroa, M.3
  • 39
    • 35748974883 scopus 로고    scopus 로고
    • Nanoionics-based resistive switching memories
    • DOI 10.1038/nmat2023, PII NMAT2023
    • R. Waser and M. Aono, "Nanoionics-based resistive switching memories," Nature Mater., vol. 6, no. 11, pp. 833-840, 2007. (Pubitemid 350064191)
    • (2007) Nature Materials , vol.6 , Issue.11 , pp. 833-840
    • Waser, R.1    Aono, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.