메뉴 건너뛰기




Volumn 21, Issue 6, 2010, Pages 961-971

Realization of the conscience mechanism in cmos implementation of winner-takes-all self-organizing neural networks

Author keywords

Analog circuits; Complementary metal?oxide?semiconductor (CMOS) implementation; Conscience mechanism; Low energy consumption; Parallel data processing; Self organizing map (SOM); Winner takes all (WTA) neural networks

Indexed keywords

COMPLEMENTARY METAL?OXIDE?SEMICONDUCTOR (CMOS) IMPLEMENTATION; CONSCIENCE MECHANISM; LOW ENERGY CONSUMPTION; PARALLEL DATA PROCESSING; WINNER-TAKES-ALL (WTA) NEURAL NETWORKS;

EID: 77953113958     PISSN: 10459227     EISSN: None     Source Type: Journal    
DOI: 10.1109/TNN.2010.2046497     Document Type: Article
Times cited : (61)

References (34)
  • 4
    • 0027594205 scopus 로고
    • Programmable analog VLSI neural network processor for communication receivers
    • DOI 10.1109/72.217191
    • J. Choi, S. H. Bang, and B. J. Sheu, "A programmable analog VLSI neural network processor for communication receivers," IEEE Trans. Neural Netw., vol.4, no.3, pp. 484-495, May 1993. (Pubitemid 23684032)
    • (1993) IEEE Transactions on Neural Networks , vol.4 , Issue.3 , pp. 484-495
    • Joongho, C.1    Sa Hyun, B.2    Sheu Bing, J.3
  • 5
    • 0032683138 scopus 로고    scopus 로고
    • Frequency-based multilayer neural network with on-chip learning
    • May
    • H. Hikawa, "Frequency-based multilayer neural network with on-chip learning," IEEE Trans. Neural Netw., vol.10, no.3, pp. 545-553, May 1999.
    • (1999) IEEE Trans. Neural Netw. , vol.10 , Issue.3 , pp. 545-553
    • Hikawa, H.1
  • 6
    • 0029304866 scopus 로고
    • A hybrid analog and digital VLSI neural network for intracardiac morphology classification
    • May
    • R. Coggins, M. Jabri, B. Flower, and S. Pickard, "A hybrid analog and digital VLSI neural network for intracardiac morphology classification, " IEEE J. Solid-State Circuits, vol.30, no.5, pp. 542-550, May 1995.
    • (1995) IEEE J. Solid-State Circuits , vol.30 , Issue.5 , pp. 542-550
    • Coggins, R.1    Jabri, M.2    Flower, B.3    Pickard, S.4
  • 8
    • 0024909727 scopus 로고    scopus 로고
    • An electrically trainable artificial neural network (ETANN) with 10240 'Floating gate' synapses
    • Washington, DC, Jun.
    • M. Holler, S. Tam, H. Castro, and R. Benson, "An electrically trainable artificial neural network (ETANN) with 10240 'Floating gate' synapses," in Proc. Int. Joint Conf. Neural Netw.,Washington, DC, Jun. 1998, pp. 191-196.
    • (1998) Proc. Int. Joint Conf. Neural Netw. , pp. 191-196
    • Holler, M.1    Tam, S.2    Castro, H.3    Benson, R.4
  • 11
    • 84887002637 scopus 로고    scopus 로고
    • Adaptive weight change mechanism for Kohonens's neural network implemented in CMOS 0.18 μm technology
    • Bruges, Belgium, Apr.
    • T. Talaśka, R. Długosz, and W. Pedrycz, "Adaptive weight change mechanism for Kohonens's neural network implemented in CMOS 0.18 μm technology," in Proc. Eur. Symp. Artif. Neural Netw., Bruges, Belgium, Apr. 2007, pp. 151-156.
    • (2007) Proc. Eur. Symp. Artif. Neural Netw. , pp. 151-156
    • Talaśka, T.1    Długosz, R.2    Pedrycz, W.3
  • 12
    • 75149194705 scopus 로고    scopus 로고
    • Initialization mechanism in Kohonen neural network implemented in CMOS technology
    • Bruges, Belgium, Apr.
    • T. Talaśka and R. Długosz, "Initialization mechanism in Kohonen neural network implemented in CMOS technology," in Proc. Eur. Symp. Artif. Neural Netw., Bruges, Belgium, Apr. 2008, pp. 337-342.
    • (2008) Proc. Eur. Symp. Artif. Neural Netw. , pp. 337-342
    • Talaśka, T.1    Długosz, R.2
  • 14
    • 0003410791 scopus 로고    scopus 로고
    • 3rd ed. Berlin, Germany: Springer-Verlag
    • T. Kohonen, Self-Organizing Maps, 3rd ed. Berlin, Germany: Springer-Verlag, 2001.
    • (2001) Self-Organizing Maps
    • Kohonen, T.1
  • 15
    • 33646528177 scopus 로고    scopus 로고
    • A comparison between habituation and conscience mechanism in self-organizing maps
    • May
    • R. Rizzo and A. Chella, "A comparison between habituation and conscience mechanism in self-organizing maps," IEEE Trans. Neural Netw., vol.17, no.3, pp. 807-810, May 2006.
    • (2006) IEEE Trans. Neural Netw. , vol.17 , Issue.3 , pp. 807-810
    • Rizzo, R.1    Chella, A.2
  • 16
    • 0025225150 scopus 로고
    • Competitive learning algorithms for vector quantization
    • S. C. Ahalt, A. K. Krishnamurthy, P. Chen, and D. E. Melton, "Competitive learning algorithms for vector quantization," Neural Netw., vol.3, pp. 277-290, 1990.
    • (1990) Neural Netw. , vol.3 , pp. 277-290
    • Ahalt, S.C.1    Krishnamurthy, A.K.2    Chen, P.3    Melton, D.E.4
  • 17
    • 0002656190 scopus 로고
    • Feature discovery by competitive learning
    • Jan.-Mar.
    • D. E. Rumelhart and D. Zipser, "Feature discovery by competitive learning," Cogn. Sci., vol.9, no.1, pp. 75-112, Jan.-Mar. 1985.
    • (1985) Cogn. Sci. , vol.9 , Issue.1 , pp. 75-112
    • Rumelhart, D.E.1    Zipser, D.2
  • 18
    • 0024123145 scopus 로고
    • Adding a conscience to competitive learning
    • San Diego, CA, Jul.
    • D. DeSieno, "Adding a conscience to competitive learning," in Proc. IEEE Conf. Neural Netw., San Diego, CA, Jul. 1988, vol.1, pp. 117-124.
    • (1988) Proc. IEEE Conf. Neural Netw. , vol.1 , pp. 117-124
    • De Sieno, D.1
  • 19
    • 63049093583 scopus 로고    scopus 로고
    • Comparison between analog and digital neural network implementations for range-finding applications
    • Mar.
    • L. Gatet, H. Tap-Béteille, and F. Bony, "Comparison between analog and digital neural network implementations for range-finding applications," IEEE Trans. Neural Netw., vol.20, no.3, pp. 460-470, Mar. 2009.
    • (2009) IEEE Trans. Neural Netw. , vol.20 , Issue.3 , pp. 460-470
    • Gatet, L.1    Tap-Béteille, H.2    Bony, F.3
  • 20
    • 51849136535 scopus 로고    scopus 로고
    • Physiological data acquisition system for education assessment using wireless sensor network
    • Shenzhen, China, May
    • W. Zhang, S. Jing, L. Gui, and Y. Zhang, "Physiological data acquisition system for education assessment using wireless sensor network," in Proc. Int. Conf. Technol. Appl., Shenzhen, China, May 2008, pp. 471-473.
    • (2008) Proc. Int. Conf. Technol. Appl. , pp. 471-473
    • Zhang, W.1    Jing, S.2    Gui, L.3    Zhang, Y.4
  • 22
    • 84947445509 scopus 로고
    • Neural network initialization
    • Berlin, Germany: Springer-Verlag, DOI: 10.1007/3-540-59497-3-220, ISSN: 0302-9743, ISBN: 978-3-540-59497-0
    • G. Thimm and E. Fiesler, "Neural network initialization," in From Neural to Artificial Neural Computation. Berlin, Germany: Springer-Verlag, 1995, vol.930, pp. 535-542, DOI: 10.1007/3-540-59497-3-220, ISSN: 0302-9743, ISBN: 978-3-540-59497-0.
    • (1995) From Neural to Artificial Neural Computation , vol.930 , pp. 535-542
    • Thimm, G.1    Fiesler, E.2
  • 23
    • 0343881265 scopus 로고
    • ANN with two-dendrite neurons and its weight initialization
    • Baltimore, MD, Jun.
    • Y. Chen and F. Bastani, "ANN with two-dendrite neurons and its weight initialization," in Proc. Int. Joint Conf. Neural Netw., Baltimore, MD, Jun. 1992, pp. 139-146.
    • (1992) Proc. Int. Joint Conf. Neural Netw. , pp. 139-146
    • Chen, Y.1    Bastani, F.2
  • 24
    • 51349163130 scopus 로고    scopus 로고
    • ASIC design of a Kohonen neural network microchip
    • Kuala Lumpur, Malaysia, Dec.
    • A. Rajah and M. H. Khalil, "ASIC design of a Kohonen neural network microchip," in Proc. IEEE Int. Conf. Semicond. Electron., Kuala Lumpur, Malaysia, Dec. 2004, pp. 148-151.
    • (2004) Proc. IEEE Int. Conf. Semicond. Electron. , pp. 148-151
    • Rajah, A.1    Khalil, M.H.2
  • 25
    • 72149119187 scopus 로고
    • A new analog implementation of the Kohonen neural network
    • Taipei, Taiwan, May
    • C.-Y. Wu and W.-K. Kuo, "A new analog implementation of the Kohonen neural network," in Proc. Int. Symp. VLSI Technol. Systems Appl., Taipei, Taiwan, May 1993, pp. 262-266.
    • (1993) Proc. Int. Symp. VLSI Technol. Systems Appl. , pp. 262-266
    • Wu, C.-Y.1    Kuo, W.-K.2
  • 26
    • 0027594068 scopus 로고
    • Analog implementation of a Kohonen map with on-chip learning
    • May
    • D. Macq, M. Verleysen, and P. J.-D. Legat, "Analog implementation of a Kohonen map with on-chip learning," IEEE Trans. Neural Netw., vol.4, no.3, pp. 456-461, May 1993.
    • (1993) IEEE Trans. Neural Netw. , vol.4 , Issue.3 , pp. 456-461
    • MacQ, D.1    Verleysen, M.2    Legat, P.J.-D.3
  • 27
    • 48749084036 scopus 로고    scopus 로고
    • Current mode Euclidean distance calculation circuit for Kohonen's neural network implemented in CMOS 0.18 μm technology
    • Vancouver, "C, Canada, Apr.
    • T. Talaśka and R. Długosz, "Current mode Euclidean distance calculation circuit for Kohonen's neural network implemented in CMOS 0.18 μm technology," in Proc. IEEE Can. Conf. Electr. Comput. Eng., Vancouver, "C, Canada, Apr. 2007, pp. 437-440.
    • (2007) Proc. IEEE Can. Conf. Electr. Comput. Eng. , pp. 437-440
    • Talaśka, T.1    Długosz, R.2
  • 28
    • 33846030970 scopus 로고    scopus 로고
    • Improved power-saving synapse for adaptive neuroprocessing on silicon
    • Poznań, Poland, Sep.
    • R.Wojtyna and T. Talaśka, "Improved power-saving synapse for adaptive neuroprocessing on silicon," in Proc. IEEE Int. Conf. Signals Electron. Syst., Poznań, Poland, Sep. 2004, pp. 27-30.
    • (2004) Proc. IEEE Int. Conf. Signals Electron. Syst. , pp. 27-30
    • Wojtyna, R.1    Talaśka, T.2
  • 29
    • 0033365847 scopus 로고    scopus 로고
    • Self-organizing maps and learning vector quantization for feature sequences
    • Oct.
    • P. Somervuo and T. Kohonen, "Self-organizing maps and learning vector quantization for feature sequences," Neural Process. Lett., vol.10, no.2, pp. 151-159, Oct. 1999.
    • (1999) Neural Process. Lett. , vol.10 , Issue.2 , pp. 151-159
    • Somervuo, P.1    Kohonen, T.2
  • 31
    • 13844299255 scopus 로고    scopus 로고
    • New adaptive color quantization method based on self-organizing maps
    • Jan.
    • C.-H. Chang, P. Xu, R. Xiao, and T. Srikanthan, "New adaptive color quantization method based on self-organizing maps," IEEE Trans. Neural Netw., vol.16, pp. 237-249, Jan. 2005.
    • (2005) IEEE Trans. Neural Netw. , vol.16 , pp. 237-249
    • Chang, C.-H.1    Xu, P.2    Xiao, R.3    Srikanthan, T.4
  • 32
    • 56349090524 scopus 로고    scopus 로고
    • CMOS programmable asynchronous neighborhood mechanism for WTM Kohonen neural network
    • Poznań, Poland, Jun.
    • R. Długosz and M. Kolasa, "CMOS programmable asynchronous neighborhood mechanism for WTM Kohonen neural network," in Proc. Int. Conf. Mixed Design Integr. Circuits Syst., Poznań, Poland, Jun. 2008, pp. 197-201.
    • (2008) Proc. Int. Conf. Mixed Design Integr. Circuits Syst. , pp. 197-201
    • Długosz, R.1    Kolasa, M.2
  • 33
    • 84887009180 scopus 로고    scopus 로고
    • Parallel asynchronous neighborhood mechanism for WTM Kohonen network implemented in CMOS technology
    • Bruges, Belgium, Apr.
    • M. Kolasa and R. Długosz, "Parallel asynchronous neighborhood mechanism for WTM Kohonen network implemented in CMOS technology," in Proc. Eur. Symp. Artif. Neural Netw., Bruges, Belgium, Apr. 2008, pp. 331-336.
    • (2008) Proc. Eur. Symp. Artif. Neural Netw. , pp. 331-336
    • Kolasa, M.1    Długosz, R.2
  • 34
    • 75149167081 scopus 로고    scopus 로고
    • Low power current-mode binary-tree asynchronous Min/Max circuit
    • Jan.
    • R. Długosz and T. Talaśka, "Low power current-mode binary-tree asynchronous Min/Max circuit," Microelectron. J., vol.41, no.1, pp. 64-73, Jan. 2010.
    • (2010) Microelectron. J. , vol.41 , Issue.1 , pp. 64-73
    • Długosz, R.1    Talaśka, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.