메뉴 건너뛰기




Volumn 6, Issue 6, 2011, Pages

SWI/SNF and Asf1 independently promote derepression of the DNA damage response genes under conditions of replication stress

Author keywords

[No Author keywords available]

Indexed keywords

CHAPERONE; FUNGAL DNA; FUNGAL RNA; PROTEIN ASF1; SWI SNF ENZYME; TRANSCRIPTION FACTOR SNF; TRANSCRIPTION FACTOR SNF2; UNCLASSIFIED DRUG; ASF1 PROTEIN, S CEREVISIAE; CELL CYCLE PROTEIN; NONHISTONE PROTEIN; SACCHAROMYCES CEREVISIAE PROTEIN; SWI SNF B CHROMATIN REMODELING COMPLEX; SWI-SNF-B CHROMATIN-REMODELING COMPLEX; TRANSCRIPTION FACTOR;

EID: 79959585036     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0021633     Document Type: Article
Times cited : (7)

References (57)
  • 1
    • 0027295019 scopus 로고
    • The yeast SNF2/SWI2 protein has DNA-stimulated ATPase activity required for transcriptional activation
    • Laurent BC, Treich I, Carlson M, (1993) The yeast SNF2/SWI2 protein has DNA-stimulated ATPase activity required for transcriptional activation. Genes Dev 7: 583-591.
    • (1993) Genes Dev , vol.7 , pp. 583-591
    • Laurent, B.C.1    Treich, I.2    Carlson, M.3
  • 2
    • 33749150994 scopus 로고    scopus 로고
    • Snf2 family ATPases and DExx box helicases: differences and unifying concepts from high-resolution crystal structures
    • Durr H, Flaus A, Owen-Hughes T, Hopfner KP, (2006) Snf2 family ATPases and DExx box helicases: differences and unifying concepts from high-resolution crystal structures. Nucleic Acids Res 34: 4160-4167.
    • (2006) Nucleic Acids Res , vol.34 , pp. 4160-4167
    • Durr, H.1    Flaus, A.2    Owen-Hughes, T.3    Hopfner, K.P.4
  • 3
    • 0029841339 scopus 로고    scopus 로고
    • Remodeling the chromatin structure of a nucleosome array by transcription factor-targeted trans-displacement of histones
    • Owen-Hughes T, Workman JL, (1996) Remodeling the chromatin structure of a nucleosome array by transcription factor-targeted trans-displacement of histones. Embo J 15: 4702-4712.
    • (1996) Embo J , vol.15 , pp. 4702-4712
    • Owen-Hughes, T.1    Workman, J.L.2
  • 4
    • 0030782468 scopus 로고    scopus 로고
    • Catalytic activity of the yeast SWI/SNF complex on reconstituted nucleosome arrays
    • Logie C, Peterson CL, (1997) Catalytic activity of the yeast SWI/SNF complex on reconstituted nucleosome arrays. Embo J 16: 6772-6782.
    • (1997) Embo J , vol.16 , pp. 6772-6782
    • Logie, C.1    Peterson, C.L.2
  • 5
    • 33947684367 scopus 로고    scopus 로고
    • The ins and outs of ATP-dependent chromatin remodeling in budding yeast: biophysical and proteomic perspectives
    • van Vugt JJ, Ranes M, Campsteijn C, Logie C, (2007) The ins and outs of ATP-dependent chromatin remodeling in budding yeast: biophysical and proteomic perspectives. Biochim Biophys Acta 1769: 153-171.
    • (2007) Biochim Biophys Acta , vol.1769 , pp. 153-171
    • van Vugt, J.J.1    Ranes, M.2    Campsteijn, C.3    Logie, C.4
  • 6
    • 0034255298 scopus 로고    scopus 로고
    • The Swi/Snf family nucleosome-remodeling complexes and transcriptional control
    • Sudarsanam P, Winston F, (2000) The Swi/Snf family nucleosome-remodeling complexes and transcriptional control. Trends Genet 16: 345-351.
    • (2000) Trends Genet , vol.16 , pp. 345-351
    • Sudarsanam, P.1    Winston, F.2
  • 7
    • 10644231814 scopus 로고    scopus 로고
    • Proteomic analysis of chromatin-modifying complexes in Saccharomyces cerevisiae identifies novel subunits
    • Lee KK, Prochasson P, Florens L, Swanson SK, Washburn MP, et al. (2004) Proteomic analysis of chromatin-modifying complexes in Saccharomyces cerevisiae identifies novel subunits. Biochem Soc Trans 32: 899-903.
    • (2004) Biochem Soc Trans , vol.32 , pp. 899-903
    • Lee, K.K.1    Prochasson, P.2    Florens, L.3    Swanson, S.K.4    Washburn, M.P.5
  • 8
    • 0033082238 scopus 로고    scopus 로고
    • Reconstitution of a core chromatin remodeling complex from SWI/SNF subunits
    • Phelan ML, Sif S, Narlikar GJ, Kingston RE, (1999) Reconstitution of a core chromatin remodeling complex from SWI/SNF subunits. Mol Cell 3: 247-253.
    • (1999) Mol Cell , vol.3 , pp. 247-253
    • Phelan, M.L.1    Sif, S.2    Narlikar, G.J.3    Kingston, R.E.4
  • 9
    • 0034724394 scopus 로고    scopus 로고
    • Whole-genome expression analysis of snf/swi mutants of Saccharomyces cerevisiae
    • Sudarsanam P, Iyer VR, Brown PO, Winston F, (2000) Whole-genome expression analysis of snf/swi mutants of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 97: 3364-3369.
    • (2000) Proc Natl Acad Sci U S A , vol.97 , pp. 3364-3369
    • Sudarsanam, P.1    Iyer, V.R.2    Brown, P.O.3    Winston, F.4
  • 11
    • 35148882905 scopus 로고    scopus 로고
    • The Swi/Snf complex is important for histone eviction during transcriptional activation and RNA polymerase II elongation in vivo
    • Schwabish MA, Struhl K, (2007) The Swi/Snf complex is important for histone eviction during transcriptional activation and RNA polymerase II elongation in vivo. Mol Cell Biol 27: 6987-6995.
    • (2007) Mol Cell Biol , vol.27 , pp. 6987-6995
    • Schwabish, M.A.1    Struhl, K.2
  • 12
    • 22544450837 scopus 로고    scopus 로고
    • Histones are incorporated in trans during reassembly of the yeast PHO5 promoter
    • Schermer UJ, Korber P, Horz W, (2005) Histones are incorporated in trans during reassembly of the yeast PHO5 promoter. Mol Cell 19: 279-285.
    • (2005) Mol Cell , vol.19 , pp. 279-285
    • Schermer, U.J.1    Korber, P.2    Horz, W.3
  • 13
    • 0033135581 scopus 로고    scopus 로고
    • A role for the yeast SWI/SNF complex in DNA replication
    • Flanagan JF, Peterson CL, (1999) A role for the yeast SWI/SNF complex in DNA replication. Nucleic Acids Res 27: 2022-2028.
    • (1999) Nucleic Acids Res , vol.27 , pp. 2022-2028
    • Flanagan, J.F.1    Peterson, C.L.2
  • 14
    • 4444257692 scopus 로고    scopus 로고
    • The Swi/Snf chromatin remodeling complex is required for ribosomal DNA and telomeric silencing in Saccharomyces cerevisiae
    • Dror V, Winston F, (2004) The Swi/Snf chromatin remodeling complex is required for ribosomal DNA and telomeric silencing in Saccharomyces cerevisiae. Mol Cell Biol 24: 8227-8235.
    • (2004) Mol Cell Biol , vol.24 , pp. 8227-8235
    • Dror, V.1    Winston, F.2
  • 15
    • 33749520485 scopus 로고    scopus 로고
    • Rad4-Rad23 interaction with SWI/SNF links ATP-dependent chromatin remodeling with nucleotide excision repair
    • Gong F, Fahy D, Smerdon MJ, (2006) Rad4-Rad23 interaction with SWI/SNF links ATP-dependent chromatin remodeling with nucleotide excision repair. Nat Struct Mol Biol 13: 902-907.
    • (2006) Nat Struct Mol Biol , vol.13 , pp. 902-907
    • Gong, F.1    Fahy, D.2    Smerdon, M.J.3
  • 16
    • 23044479628 scopus 로고    scopus 로고
    • Distinct roles for the RSC and Swi/Snf ATP-dependent chromatin remodelers in DNA double-strand break repair
    • Chai B, Huang J, Cairns BR, Laurent BC, (2005) Distinct roles for the RSC and Swi/Snf ATP-dependent chromatin remodelers in DNA double-strand break repair. Genes Dev 19: 1656-1661.
    • (2005) Genes Dev , vol.19 , pp. 1656-1661
    • Chai, B.1    Huang, J.2    Cairns, B.R.3    Laurent, B.C.4
  • 17
    • 2642647094 scopus 로고    scopus 로고
    • Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer
    • Versteege I, Sevenet N, Lange J, Rousseau-Merck MF, Ambros P, et al. (1998) Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature 394: 203-206.
    • (1998) Nature , vol.394 , pp. 203-206
    • Versteege, I.1    Sevenet, N.2    Lange, J.3    Rousseau-Merck, M.F.4    Ambros, P.5
  • 18
    • 70350539592 scopus 로고    scopus 로고
    • Hijacking the chromatin remodeling machinery: impact of SWI/SNF perturbations in cancer
    • Weissman B, Knudsen KE, (2009) Hijacking the chromatin remodeling machinery: impact of SWI/SNF perturbations in cancer. Cancer Res 69: 8223-8230.
    • (2009) Cancer Res , vol.69 , pp. 8223-8230
    • Weissman, B.1    Knudsen, K.E.2
  • 19
    • 44949119317 scopus 로고    scopus 로고
    • Histone chaperones in nucleosome eviction and histone exchange
    • Park YJ, Luger K, (2008) Histone chaperones in nucleosome eviction and histone exchange. Curr Opin Struct Biol 18: 282-289.
    • (2008) Curr Opin Struct Biol , vol.18 , pp. 282-289
    • Park, Y.J.1    Luger, K.2
  • 20
    • 44449104927 scopus 로고    scopus 로고
    • Clothing up DNA for all seasons: Histone chaperones and nucleosome assembly pathways
    • Rocha W, Verreault A, (2008) Clothing up DNA for all seasons: Histone chaperones and nucleosome assembly pathways. FEBS Lett 582: 1938-1949.
    • (2008) FEBS Lett , vol.582 , pp. 1938-1949
    • Rocha, W.1    Verreault, A.2
  • 21
    • 34047262671 scopus 로고    scopus 로고
    • Transcriptional regulation by chromatin disassembly and reassembly
    • Williams SK, Tyler JK, (2007) Transcriptional regulation by chromatin disassembly and reassembly. Curr Opin Genet Dev 17: 88-93.
    • (2007) Curr Opin Genet Dev , vol.17 , pp. 88-93
    • Williams, S.K.1    Tyler, J.K.2
  • 22
    • 35848964068 scopus 로고    scopus 로고
    • Histone chaperones: an escort network regulating histone traffic
    • De Koning L, Corpet A, Haber JE, Almouzni G, (2007) Histone chaperones: an escort network regulating histone traffic. Nat Struct Mol Biol 14: 997-1007.
    • (2007) Nat Struct Mol Biol , vol.14 , pp. 997-1007
    • de Koning, L.1    Corpet, A.2    Haber, J.E.3    Almouzni, G.4
  • 23
    • 76849084692 scopus 로고    scopus 로고
    • A role for Gcn5 in replication-coupled nucleosome assembly
    • Burgess RJ, Zhou H, Han J, Zhang Z, (2010) A role for Gcn5 in replication-coupled nucleosome assembly. Mol Cell 37: 469-480.
    • (2010) Mol Cell , vol.37 , pp. 469-480
    • Burgess, R.J.1    Zhou, H.2    Han, J.3    Zhang, Z.4
  • 24
    • 11844268072 scopus 로고    scopus 로고
    • The histone chaperone anti-silencing function 1 is a global regulator of transcription independent of passage through S phase
    • Zabaronick SR, Tyler JK, (2005) The histone chaperone anti-silencing function 1 is a global regulator of transcription independent of passage through S phase. Mol Cell Biol 25: 652-660.
    • (2005) Mol Cell Biol , vol.25 , pp. 652-660
    • Zabaronick, S.R.1    Tyler, J.K.2
  • 25
    • 65649153311 scopus 로고    scopus 로고
    • FACT and Asf1 regulate nucleosome dynamics and coactivator binding at the HO promoter
    • Takahata S, Yu Y, Stillman DJ, (2009) FACT and Asf1 regulate nucleosome dynamics and coactivator binding at the HO promoter. Mol Cell 34: 405-415.
    • (2009) Mol Cell , vol.34 , pp. 405-415
    • Takahata, S.1    Yu, Y.2    Stillman, D.J.3
  • 26
    • 79953173256 scopus 로고    scopus 로고
    • Transcriptional regulation by Asf1: new mechanistic insights from studies of the DNA damage response to replication stress
    • Minard LV, Williams JS, Walker AC, Schultz MC, (2010) Transcriptional regulation by Asf1: new mechanistic insights from studies of the DNA damage response to replication stress. J Biol Chem 286: 7082-7092.
    • (2010) J Biol Chem , vol.286 , pp. 7082-7092
    • Minard, L.V.1    Williams, J.S.2    Walker, A.C.3    Schultz, M.C.4
  • 27
    • 2942550662 scopus 로고    scopus 로고
    • Chromatin disassembly mediated by the histone chaperone Asf1 is essential for transcriptional activation of the yeast PHO5 and PHO8 genes
    • Adkins MW, Howar SR, Tyler JK, (2004) Chromatin disassembly mediated by the histone chaperone Asf1 is essential for transcriptional activation of the yeast PHO5 and PHO8 genes. Mol Cell 14: 657-666.
    • (2004) Mol Cell , vol.14 , pp. 657-666
    • Adkins, M.W.1    Howar, S.R.2    Tyler, J.K.3
  • 28
    • 34548717647 scopus 로고    scopus 로고
    • Chromatin disassembly from the PHO5 promoter is essential for the recruitment of the general transcription machinery and coactivators
    • Adkins MW, Williams SK, Linger J, Tyler JK, (2007) Chromatin disassembly from the PHO5 promoter is essential for the recruitment of the general transcription machinery and coactivators. Mol Cell Biol 27: 6372-6382.
    • (2007) Mol Cell Biol , vol.27 , pp. 6372-6382
    • Adkins, M.W.1    Williams, S.K.2    Linger, J.3    Tyler, J.K.4
  • 29
    • 33646129019 scopus 로고    scopus 로고
    • The histone chaperone Asf1 increases the rate of histone eviction at the yeast PHO5 and PHO8 promoters
    • Korber P, Barbaric S, Luckenbach T, Schmid A, Schermer UJ, et al. (2006) The histone chaperone Asf1 increases the rate of histone eviction at the yeast PHO5 and PHO8 promoters. J Biol Chem 281: 5539-5545.
    • (2006) J Biol Chem , vol.281 , pp. 5539-5545
    • Korber, P.1    Barbaric, S.2    Luckenbach, T.3    Schmid, A.4    Schermer, U.J.5
  • 30
    • 0037442819 scopus 로고    scopus 로고
    • SWI/SNF-dependent chromatin remodeling of RNR3 requires TAF(II)s and the general transcription machinery
    • Sharma VM, Li B, Reese JC, (2003) SWI/SNF-dependent chromatin remodeling of RNR3 requires TAF(II)s and the general transcription machinery. Genes Dev 17: 502-515.
    • (2003) Genes Dev , vol.17 , pp. 502-515
    • Sharma, V.M.1    Li, B.2    Reese, J.C.3
  • 31
    • 19344372948 scopus 로고    scopus 로고
    • A protein complex containing the conserved Swi2/Snf2-related ATPase Swr1p deposits histone variant H2A.Z into euchromatin
    • Kobor MS, Venkatasubrahmanyam S, Meneghini MD, Gin JW, Jennings JL, et al. (2004) A protein complex containing the conserved Swi2/Snf2-related ATPase Swr1p deposits histone variant H2A.Z into euchromatin. PLoS Biol 2: E131.
    • (2004) PLoS Biol , vol.2
    • Kobor, M.S.1    Venkatasubrahmanyam, S.2    Meneghini, M.D.3    Gin, J.W.4    Jennings, J.L.5
  • 32
    • 0037108055 scopus 로고    scopus 로고
    • Histone chaperone ASF1 cooperates with the Brahma chromatin-remodelling machinery
    • Moshkin YM, Armstrong JA, Maeda RK, Tamkun JW, Verrijzer P, et al. (2002) Histone chaperone ASF1 cooperates with the Brahma chromatin-remodelling machinery. Genes Dev 16: 2621-2626.
    • (2002) Genes Dev , vol.16 , pp. 2621-2626
    • Moshkin, Y.M.1    Armstrong, J.A.2    Maeda, R.K.3    Tamkun, J.W.4    Verrijzer, P.5
  • 33
    • 0030813561 scopus 로고    scopus 로고
    • Identification of RNR4, encoding a second essential small subunit of ribonucleotide reductase in Saccharomyces cerevisiae
    • Huang M, Elledge SJ, (1997) Identification of RNR4, encoding a second essential small subunit of ribonucleotide reductase in Saccharomyces cerevisiae. Mol Cell Biol 17: 6105-6113.
    • (1997) Mol Cell Biol , vol.17 , pp. 6105-6113
    • Huang, M.1    Elledge, S.J.2
  • 34
    • 0032826786 scopus 로고    scopus 로고
    • NORF5/HUG1 is a component of the MEC1-mediated checkpoint response to DNA damage and replication arrest in Saccharomyces cerevisiae
    • Basrai MA, Velculescu VE, Kinzler KW, Hieter P, (1999) NORF5/HUG1 is a component of the MEC1-mediated checkpoint response to DNA damage and replication arrest in Saccharomyces cerevisiae. Mol Cell Biol 19: 7041-7049.
    • (1999) Mol Cell Biol , vol.19 , pp. 7041-7049
    • Basrai, M.A.1    Velculescu, V.E.2    Kinzler, K.W.3    Hieter, P.4
  • 35
    • 23844531920 scopus 로고    scopus 로고
    • Molecular genetic analysis of the yeast repressor Rfx1/Crt1 reveals a novel two-step regulatory mechanism
    • Zhang Z, Reese JC, (2005) Molecular genetic analysis of the yeast repressor Rfx1/Crt1 reveals a novel two-step regulatory mechanism. Mol Cell Biol 25: 7399-7411.
    • (2005) Mol Cell Biol , vol.25 , pp. 7399-7411
    • Zhang, Z.1    Reese, J.C.2
  • 36
    • 33846818840 scopus 로고    scopus 로고
    • Yeast Rtt109 promotes genome stability by acetylating histone H3 on lysine 56
    • Driscoll R, Hudson A, Jackson SP, (2007) Yeast Rtt109 promotes genome stability by acetylating histone H3 on lysine 56. Science 315: 649-652.
    • (2007) Science , vol.315 , pp. 649-652
    • Driscoll, R.1    Hudson, A.2    Jackson, S.P.3
  • 37
    • 33846796258 scopus 로고    scopus 로고
    • Rtt109 acetylates histone H3 lysine 56 and functions in DNA replication
    • Han J, Zhou H, Horazdovsky B, Zhang K, Xu RM, et al. (2007) Rtt109 acetylates histone H3 lysine 56 and functions in DNA replication. Science 315: 653-655.
    • (2007) Science , vol.315 , pp. 653-655
    • Han, J.1    Zhou, H.2    Horazdovsky, B.3    Zhang, K.4    Xu, R.M.5
  • 38
    • 34147217542 scopus 로고    scopus 로고
    • Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map
    • Collins SR, Miller KM, Maas NL, Roguev A, Fillingham J, et al. (2007) Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map. Nature 446: 806-810.
    • (2007) Nature , vol.446 , pp. 806-810
    • Collins, S.R.1    Miller, K.M.2    Maas, N.L.3    Roguev, A.4    Fillingham, J.5
  • 40
    • 0033518179 scopus 로고    scopus 로고
    • The RCAF complex mediates chromatin assembly during DNA replication and repair
    • Tyler JK, Adams CR, Chen SR, Kobayashi R, Kamakaka RT, et al. (1999) The RCAF complex mediates chromatin assembly during DNA replication and repair. Nature 402: 555-560.
    • (1999) Nature , vol.402 , pp. 555-560
    • Tyler, J.K.1    Adams, C.R.2    Chen, S.R.3    Kobayashi, R.4    Kamakaka, R.T.5
  • 41
    • 34347265775 scopus 로고    scopus 로고
    • DNA repair pathways and hereditary cancer susceptibility syndromes
    • Spry M, Scott T, Pierce H, D'Orazio JA, (2007) DNA repair pathways and hereditary cancer susceptibility syndromes. Front Biosci 12: 4191-4207.
    • (2007) Front Biosci , vol.12 , pp. 4191-4207
    • Spry, M.1    Scott, T.2    Pierce, H.3    D'Orazio, J.A.4
  • 42
    • 0035101733 scopus 로고    scopus 로고
    • Dynamic interaction of DNA damage checkpoint protein Rad53 with chromatin assembly factor Asf1
    • Emili A, Schieltz DM, Yates JR 3rd, Hartwell LH, (2001) Dynamic interaction of DNA damage checkpoint protein Rad53 with chromatin assembly factor Asf1. Mol Cell 7: 13-20.
    • (2001) Mol Cell , vol.7 , pp. 13-20
    • Emili, A.1    Schieltz, D.M.2    Yates 3rd, J.R.3    Hartwell, L.H.4
  • 43
    • 0035336971 scopus 로고    scopus 로고
    • Asf1 links Rad53 to control of chromatin assembly
    • Hu F, Alcasabas AA, Elledge SJ, (2001) Asf1 links Rad53 to control of chromatin assembly. Genes Dev 15: 1061-1066.
    • (2001) Genes Dev , vol.15 , pp. 1061-1066
    • Hu, F.1    Alcasabas, A.A.2    Elledge, S.J.3
  • 44
    • 0038730929 scopus 로고    scopus 로고
    • A central role for DNA replication forks in checkpoint activation and response
    • Tercero JA, Longhese MP, Diffley JF, (2003) A central role for DNA replication forks in checkpoint activation and response. Mol Cell 11: 1323-1336.
    • (2003) Mol Cell , vol.11 , pp. 1323-1336
    • Tercero, J.A.1    Longhese, M.P.2    Diffley, J.F.3
  • 45
    • 70249101769 scopus 로고    scopus 로고
    • Coupling phosphate homeostasis to cell cycle-specific transcription: mitotic activation of Saccharomyces cerevisiae PHO5 by Mcm1 and Forkhead proteins
    • Pondugula S, Neef DW, Voth WP, Darst RP, Dhasarathy A, et al. (2009) Coupling phosphate homeostasis to cell cycle-specific transcription: mitotic activation of Saccharomyces cerevisiae PHO5 by Mcm1 and Forkhead proteins. Mol Cell Biol 29: 4891-4905.
    • (2009) Mol Cell Biol , vol.29 , pp. 4891-4905
    • Pondugula, S.1    Neef, D.W.2    Voth, W.P.3    Darst, R.P.4    Dhasarathy, A.5
  • 46
    • 0033529707 scopus 로고    scopus 로고
    • Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis
    • Winzeler EA, Shoemaker DD, Astromoff A, Liang H, Anderson K, et al. (1999) Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285: 901-906.
    • (1999) Science , vol.285 , pp. 901-906
    • Winzeler, E.A.1    Shoemaker, D.D.2    Astromoff, A.3    Liang, H.4    Anderson, K.5
  • 47
    • 0035945273 scopus 로고    scopus 로고
    • Effect of chromosomal locus, GC content and length of homology on PCR-mediated targeted gene replacement in Saccharomyces
    • Gray M, Honigberg SM, (2001) Effect of chromosomal locus, GC content and length of homology on PCR-mediated targeted gene replacement in Saccharomyces. Nucleic Acids Res 29: 5156-5162.
    • (2001) Nucleic Acids Res , vol.29 , pp. 5156-5162
    • Gray, M.1    Honigberg, S.M.2
  • 48
    • 0032873415 scopus 로고    scopus 로고
    • Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae
    • Goldstein AL, McCusker JH, (1999) Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast 15: 1541-1553.
    • (1999) Yeast , vol.15 , pp. 1541-1553
    • Goldstein, A.L.1    McCusker, J.H.2
  • 49
    • 0031820288 scopus 로고    scopus 로고
    • Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae
    • Longtine MS, McKenzie A 3rd, Demarini DJ, Shah NG, Wach A, et al. (1998) Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14: 953-961.
    • (1998) Yeast , vol.14 , pp. 953-961
    • Longtine, M.S.1    McKenzie 3rd., A.2    Demarini, D.J.3    Shah, N.G.4    Wach, A.5
  • 50
    • 0024669291 scopus 로고
    • A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae
    • Sikorski RS, Hieter P, (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122: 19-27.
    • (1989) Genetics , vol.122 , pp. 19-27
    • Sikorski, R.S.1    Hieter, P.2
  • 51
    • 0001312016 scopus 로고
    • Basic techniques of yeast genetics
    • In: Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, editors, New York, John Wiley and Sons
    • Treco DA, Lundblad V, (1993) Basic techniques of yeast genetics. In: Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, editors. Current Protocols in Molecular Biology New York John Wiley and Sons pp. 13.11.11-13.11.17.
    • (1993) Current Protocols in Molecular Biology , pp. 11-17
    • Treco, D.A.1    Lundblad, V.2
  • 53
    • 67651183861 scopus 로고    scopus 로고
    • A glycolytic burst drives glucose induction of global histone acetylation by picNuA4 and SAGA
    • Friis RMN, Wu BP, Reinke SN, Hockman DJ, Sykes BD, et al. (2009) A glycolytic burst drives glucose induction of global histone acetylation by picNuA4 and SAGA. Nucleic Acids Res 37: 3969-3980.
    • (2009) Nucleic Acids Res , vol.37 , pp. 3969-3980
    • Friis, R.M.N.1    Wu, B.P.2    Reinke, S.N.3    Hockman, D.J.4    Sykes, B.D.5
  • 54
    • 79953173256 scopus 로고    scopus 로고
    • Transcriptional regulation by Asf1: new mechanistic insights from studies of the DNA damage response to replication stress
    • Minard LV, Williams JS, Walker AC, Schultz MC, (2011) Transcriptional regulation by Asf1: new mechanistic insights from studies of the DNA damage response to replication stress. Journal of Biological Chemistry 286: 7082-7092.
    • (2011) Journal of Biological Chemistry , vol.286 , pp. 7082-7092
    • Minard, L.V.1    Williams, J.S.2    Walker, A.C.3    Schultz, M.C.4
  • 55
    • 0032579440 scopus 로고    scopus 로고
    • Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications
    • Brachmann CB, Davies A, Cost GJ, Caputo E, Li J, et al. (1998) Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14: 115-132.
    • (1998) Yeast , vol.14 , pp. 115-132
    • Brachmann, C.B.1    Davies, A.2    Cost, G.J.3    Caputo, E.4    Li, J.5
  • 56
    • 0037173615 scopus 로고    scopus 로고
    • Functional profiling of the Saccharomyces cerevisiae genome
    • Giaever G, Chu AM, Ni L, Connelly C, Riles L, et al. (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418: 387-391.
    • (2002) Nature , vol.418 , pp. 387-391
    • Giaever, G.1    Chu, A.M.2    Ni, L.3    Connelly, C.4    Riles, L.5
  • 57
    • 0242721615 scopus 로고    scopus 로고
    • Recruitment of SWI/SNF by Gcn4p does not require Snf2p or Gcn5p but depends strongly on SWI/SNF integrity, SRB mediator, and SAGA
    • Yoon S, Qiu H, Swanson MJ, Hinnebusch AG, (2003) Recruitment of SWI/SNF by Gcn4p does not require Snf2p or Gcn5p but depends strongly on SWI/SNF integrity, SRB mediator, and SAGA. Mol Cell Biol 23: 8829-8845.
    • (2003) Mol Cell Biol , vol.23 , pp. 8829-8845
    • Yoon, S.1    Qiu, H.2    Swanson, M.J.3    Hinnebusch, A.G.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.