메뉴 건너뛰기




Volumn , Issue , 2010, Pages

A comprehensive comparison of ML algorithms for gene expression data classification

Author keywords

[No Author keywords available]

Indexed keywords

BIOLOGICAL PHENOMENA; COMPREHENSIVE COMPARISONS; COMPREHENSIVE EVALUATION; DATA CLASSIFICATION; GENE EXPRESSION DATA; GENE EXPRESSION DATASETS; GENE EXPRESSION PROFILES; PERFORMANCE; PROSPECTIVES; TISSUE SAMPLES;

EID: 79959443205     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/IJCNN.2010.5596651     Document Type: Conference Paper
Times cited : (11)

References (45)
  • 3
    • 77957040774 scopus 로고    scopus 로고
    • A survey of computational methods used in microarray data interpretation
    • Bioinformatics
    • B. Tjaden and J. Cohen, "A survey of computational methods used in microarray data interpretation," Applied Mycology and Biotechnology, vol. Volume 6: Bioinformatics, pp. 1-18, 2006.
    • (2006) Applied Mycology and Biotechnology , vol.6 , pp. 1-18
    • Tjaden, B.1    Cohen, J.2
  • 4
    • 0004255908 scopus 로고    scopus 로고
    • McGraw-Hill Science/Engineering/Math, March
    • T. Mitchell, Machine Learning. McGraw-Hill Science/Engineering/Math, March 1997.
    • (1997) Machine Learning
    • Mitchell, T.1
  • 5
    • 85133057003 scopus 로고    scopus 로고
    • 1st ed., ser. Chapman & Hall/CRC Mathematical and Computational Biology. Chapman & Hall/CRC, July
    • H. Gohlmann and W. Talloen, Gene Expression Studies Using Affymetrix Microarrays, 1st ed., ser. Chapman & Hall/CRC Mathematical and Computational Biology. Chapman & Hall/CRC, July 2009.
    • (2009) Gene Expression Studies Using Affymetrix Microarrays
    • Gohlmann, H.1    Talloen, W.2
  • 6
    • 78649810227 scopus 로고    scopus 로고
    • Metalearning: Applications to Data Mining
    • ser. Springer, January [Online]. Available
    • P. Brazdil, C. Giraud-Carrier, C. Soares, and R. Vilalta, Metalearning: Applications to Data Mining, ser. Cognitive Technologies. Springer, January 2009. [Online]. Available: http://www.liaad.up.pt/pub/2009/BGSV09
    • (2009) Cognitive Technologies
    • Brazdil, P.1    Giraud-Carrier, C.2    Soares, C.3    Vilalta, R.4
  • 8
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of discrimination methods for the classification of tumors using gene expression data
    • S. Dudoit, J. Fridlyand, and T. P. Speed, "Comparison of discrimination methods for the classification of tumors using gene expression data," Journal of the American Statistical Association, vol. 97, no. 457, pp. 77-87, 2002.
    • (2002) Journal of the American Statistical Association , vol.97 , Issue.457 , pp. 77-87
    • Dudoit, S.1    Fridlyand, J.2    Speed, T.P.3
  • 9
    • 0037447386 scopus 로고    scopus 로고
    • Pattern recognition in gene expression profiling using dna array: A comparative study of different statistical methods applied to cancer classification
    • C. Romualdi, S. Campanaro, D. Campagna, B. Celegato, N. Cannata, S. Toppo, G. Valle, and G. Lanfranchi, "Pattern recognition in gene expression profiling using dna array: a comparative study of different statistical methods applied to cancer classification," Hum. Mol. Genet., vol. 12, no. 8, pp. 823-836, 2003.
    • (2003) Hum. Mol. Genet. , vol.12 , Issue.8 , pp. 823-836
    • Romualdi, C.1    Campanaro, S.2    Campagna, D.3    Celegato, B.4    Cannata, N.5    Toppo, S.6    Valle, G.7    Lanfranchi, G.8
  • 10
    • 9244261068 scopus 로고    scopus 로고
    • Evaluating methods for classifying expression data
    • M. Z. Man, G. Dyson, K. Johnson, and B. Liao, "Evaluating methods for classifying expression data," J Biopharm Stat., vol. 14, no. 4, pp. 1065-84, 2004.
    • (2004) J Biopharm Stat. , vol.14 , Issue.4 , pp. 1065-1084
    • Man, M.Z.1    Dyson, G.2    Johnson, K.3    Liao, B.4
  • 11
    • 10444280144 scopus 로고    scopus 로고
    • An extensive comparison of recent classification tools applied to microarray data
    • J. W. Lee, J. B. Lee, M. Park, and S. H. Song, "An extensive comparison of recent classification tools applied to microarray data," Computational Statistics & Data Analysis, vol. 48, no. 4, pp. 869-885, 2005.
    • (2005) Computational Statistics & Data Analysis , vol.48 , Issue.4 , pp. 869-885
    • Lee, J.W.1    Lee, J.B.2    Park, M.3    Song, S.H.4
  • 12
    • 15844413351 scopus 로고    scopus 로고
    • A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis
    • A. Statnikov, C. F. Aliferis, I. Tsamardinos, D. Hardin, and S. Levy, "A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis," Bioinformatics, vol. 21, no. 5, p. 631643, 2005.
    • (2005) Bioinformatics , vol.21 , Issue.5 , pp. 631643
    • Statnikov, A.1    Aliferis, C.F.2    Tsamardinos, I.3    Hardin, D.4    Levy, S.5
  • 13
    • 25444467981 scopus 로고    scopus 로고
    • A comparative study of discriminating human heart failure etiology using gene expression profiles
    • X. Huang, W. Pan, S. Grindle, and et al, "A comparative study of discriminating human heart failure etiology using gene expression profiles," BMC Bioinformatics, vol. 6, p. 205, 2005.
    • (2005) BMC Bioinformatics , vol.6 , pp. 205
    • Huang, X.1    Pan, W.2    Grindle, S.3
  • 14
    • 33646856024 scopus 로고    scopus 로고
    • Avoiding model selection bias in small-sample genomic datasets
    • D. Berrar, I. Bradbury, and W. Dubitzky, "Avoiding model selection bias in small-sample genomic datasets," Bioinformatics, vol. 22, no. 10, pp. 1245-1250, 2006.
    • (2006) Bioinformatics , vol.22 , Issue.10 , pp. 1245-1250
    • Berrar, D.1    Bradbury, I.2    Dubitzky, W.3
  • 15
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to roc analysis
    • T. Fawcett, "An introduction to roc analysis," Pattern Recogn. Lett., vol. 27, no. 8, pp. 861-874, 2006.
    • (2006) Pattern Recogn. Lett. , vol.27 , Issue.8 , pp. 861-874
    • Fawcett, T.1
  • 18
    • 48549094895 scopus 로고    scopus 로고
    • A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification
    • A. Statnikov, L. Wang, and C. F. Aliferis, "A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification," BMC Bioinformatics, vol. 9, pp. 319-329, 2008.
    • (2008) BMC Bioinformatics , vol.9 , pp. 319-329
    • Statnikov, A.1    Wang, L.2    Aliferis, C.F.3
  • 19
    • 14644390912 scopus 로고    scopus 로고
    • Using auc and accuracy in evaluating learning algorithms
    • J. Huang and C. X. Ling, "Using auc and accuracy in evaluating learning algorithms," IEEE Trans. on Knowl. and Data Eng., vol. 17, no. 3, pp. 299-310, 2005.
    • (2005) IEEE Trans. on Knowl. and Data Eng. , vol.17 , Issue.3 , pp. 299-310
    • Huang, J.1    Ling, C.X.2
  • 20
    • 0003562954 scopus 로고    scopus 로고
    • A simple generalisation of the area under the roc curve for multiple class classification problems
    • D. J. Hand and R. J. Till, "A simple generalisation of the area under the roc curve for multiple class classification problems," Mach. Learn., vol. 45, no. 2, pp. 171-186, 2001.
    • (2001) Mach. Learn. , vol.45 , Issue.2 , pp. 171-186
    • Hand, D.J.1    Till, R.J.2
  • 21
    • 50349090268 scopus 로고    scopus 로고
    • Cross-validation and bootstrapping are unreliable in small sample classification
    • A. Isaksson, M. Wallman, H. Göransson, and M. G. Gustafsson, "Cross-validation and bootstrapping are unreliable in small sample classification," Pattern Recogn. Lett., vol. 29, no. 14, pp. 1960-1965, 2008.
    • (2008) Pattern Recogn. Lett. , vol.29 , Issue.14 , pp. 1960-1965
    • Isaksson, A.1    Wallman, M.2    Göransson, H.3    Gustafsson, M.G.4
  • 22
    • 1342330535 scopus 로고    scopus 로고
    • Is cross-validation valid for small-sample microarray classification?
    • U. M. Braga-Neto and E. R. Dougherty, "Is cross-validation valid for small-sample microarray classification?" Bioinformatics, vol. 20, no. 3, pp. 374-380, 2004.
    • (2004) Bioinformatics , vol.20 , Issue.3 , pp. 374-380
    • Braga-Neto, U.M.1    Dougherty, E.R.2
  • 23
    • 18744413287 scopus 로고    scopus 로고
    • Estimating misclassification error with small samples via bootstrap cross-validation
    • W. J. Fu, R. J. Carroll, and S. Wang, "Estimating misclassification error with small samples via bootstrap cross-validation," Bioinformatics, vol. 21, no. 9, pp. 1979-1986, 2005.
    • (2005) Bioinformatics , vol.21 , Issue.9 , pp. 1979-1986
    • Fu, W.J.1    Carroll, R.J.2    Wang, S.3
  • 24
    • 25144494760 scopus 로고    scopus 로고
    • Prediction error estimation: A comparison of resampling methods
    • A. M. Molinaro, R. Simon, and R. M. Pfeiffer, "Prediction error estimation: a comparison of resampling methods," Bioinformatics, vol. 21, no. 15, p. 33013307, 2005.
    • (2005) Bioinformatics , vol.21 , Issue.15 , pp. 33013307
    • Molinaro, A.M.1    Simon, R.2    Pfeiffer, R.M.3
  • 25
    • 37349009294 scopus 로고    scopus 로고
    • A comparison of bootstrap methods and an adjusted bootstrap approach for estimating the prediction error in microarray classification
    • W. Jiang and R. Simon, "A comparison of bootstrap methods and an adjusted bootstrap approach for estimating the prediction error in microarray classification," STATISTICS IN MEDICINE, vol. 26, pp. 5320-5334, 2007.
    • (2007) Statistics in Medicine , vol.26 , pp. 5320-5334
    • Jiang, W.1    Simon, R.2
  • 26
    • 65749119811 scopus 로고    scopus 로고
    • Estimating classification error rate: Repeated cross-validation, repeated hold-out and bootstrap
    • September
    • J.-H. Kim, "Estimating classification error rate: Repeated cross-validation, repeated hold-out and bootstrap," Computational Statistics & Data Analysis, vol. 53, no. 11, pp. 3735-3745, September 2009.
    • (2009) Computational Statistics & Data Analysis , vol.53 , Issue.11 , pp. 3735-3745
    • Kim, J.-H.1
  • 28
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • J. Demšar, "Statistical comparisons of classifiers over multiple data sets," J. Mach. Learn. Res., vol. 7, pp. 1-30, 2006.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1-30
    • Demšar, J.1
  • 29
    • 17044407257 scopus 로고    scopus 로고
    • Feature selection in microarray analysis
    • D. Berrar, W. Dubitzky, and M. Granzow, Eds. Boston/Dordrecht/London: Kluwer Academic Publishers
    • E. P. Xing, "Feature selection in microarray analysis," in Understanding And Using Microarray Analysis Techniques: A Practical Guide, D. Berrar, W. Dubitzky, and M. Granzow, Eds. Boston/Dordrecht/London: Kluwer Academic Publishers, 2003, pp. 110-131.
    • (2003) Understanding and Using Microarray Analysis Techniques: A Practical Guide , pp. 110-131
    • Xing, E.P.1
  • 31
    • 41649121369 scopus 로고    scopus 로고
    • Calculating confidence intervals for prediction error in microarray classification using resampling
    • [Online]. Available
    • W. Jiang, S. Varma, and R. Simon, "Calculating confidence intervals for prediction error in microarray classification using resampling." Statistical applications in genetics and molecular biology, vol. 7, no. 1, 2008. [Online]. Available: http://dx.doi.org/10.2202/1544-6115.1322
    • (2008) Statistical Applications in Genetics and Molecular Biology , vol.7 , Issue.1
    • Jiang, W.1    Varma, S.2    Simon, R.3
  • 32
    • 2342646842 scopus 로고    scopus 로고
    • Lsimpute: Accurate estimation of missing values in microarray data with least squares methods
    • T. H. B, B. Dysvik, and I. Jonassen, "Lsimpute: accurate estimation of missing values in microarray data with least squares methods," Nucleic Acids Research, vol. 32, no. 3, p. e34, 2004.
    • (2004) Nucleic Acids Research , vol.32 , Issue.3
    • B, T.H.1    Dysvik, B.2    Jonassen, I.3
  • 33
    • 39749093807 scopus 로고    scopus 로고
    • Which missing value imputation method to use in expression profiles: A comparative study and two selection schemes
    • G. N. Brock, J. R. Shaffer, R. E. Blakesley, M. J. Lotz, and G. C. Tseng, "Which missing value imputation method to use in expression profiles: a comparative study and two selection schemes," BMC Bioinformatics, vol. 9, no. 12, 2008.
    • (2008) BMC Bioinformatics , vol.9 , Issue.12
    • Brock, G.N.1    Shaffer, J.R.2    Blakesley, R.E.3    Lotz, M.J.4    Tseng, G.C.5
  • 34
    • 0037076272 scopus 로고    scopus 로고
    • Diagnosis of multiple cancer types by shrunken centroids of gene expression
    • May
    • R. Tibshirani, T. Hastie, B. Narasimhan, and G. Chu, "Diagnosis of multiple cancer types by shrunken centroids of gene expression," PNAS, vol. 99, no. 10, pp. 6567-6572, May 2002.
    • (2002) PNAS , vol.99 , Issue.10 , pp. 6567-6572
    • Tibshirani, R.1    Hastie, T.2    Narasimhan, B.3    Chu, G.4
  • 35
    • 60849119837 scopus 로고    scopus 로고
    • Cma - A comprehensive bioconductor package for supervised classification with high dimensional data
    • M. Slawski, martin Daumer, and A. L. Boulesteix, "Cma - a comprehensive bioconductor package for supervised classification with high dimensional data," BMC Bioinformatics, vol. 9, no. 1, 2008.
    • (2008) BMC Bioinformatics , vol.9 , Issue.1
    • Slawski, M.1    Daumer, M.2    Boulesteix, A.L.3
  • 38
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • October
    • L. Breiman, "Random forests," Machine Learning, vol. 45, no. 1, pp. 5-32, October 2001.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 40
    • 33644860703 scopus 로고    scopus 로고
    • Bias in error estimation when using cross-validation for model selection
    • February [Online]. Available
    • S. Varma and R. Simon, "Bias in error estimation when using cross-validation for model selection," BMC Bioinformatics, vol. 7, no. 1, pp. 91-99, February 2006. [Online]. Available: http://dx.doi.org/10.1186/1471- 2105-7-91
    • (2006) BMC Bioinformatics , vol.7 , Issue.1 , pp. 91-99
    • Varma, S.1    Simon, R.2
  • 41
    • 0036740519 scopus 로고    scopus 로고
    • Multi-class cancer clasification via partial least squares with gene expression profiles
    • D. V. Nguyen and D. M. Rocke, "Multi-class cancer clasification via partial least squares with gene expression profiles," Bioinformatics, vol. 18, no. 9, pp. 1216-1226, 2002.
    • (2002) Bioinformatics , vol.18 , Issue.9 , pp. 1216-1226
    • Nguyen, D.V.1    Rocke, D.M.2
  • 42
    • 0042923097 scopus 로고    scopus 로고
    • Class prediction and discovery using gene microarray and proteomics mass spectroscopy data: Curses, caveats, cautions
    • August
    • R. Somorjai, B. Dolenko, and R. Baumgartner, "Class prediction and discovery using gene microarray and proteomics mass spectroscopy data: curses, caveats, cautions," Bioinformatics, vol. 19, no. 12, pp. 1484-1491, August 2003.
    • (2003) Bioinformatics , vol.19 , Issue.12 , pp. 1484-1491
    • Somorjai, R.1    Dolenko, B.2    Baumgartner, R.3
  • 43
    • 58149287952 scopus 로고    scopus 로고
    • An extension on statistical comparisons of classifiers over multiple data sets for all pairwise comparisons
    • S. Garca and F. Herrera, "An extension on statistical comparisons of classifiers over multiple data sets for all pairwise comparisons," Journal of Machine Learning Research, vol. 9, pp. 2677-2694, 2008.
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 2677-2694
    • Garca, S.1    Herrera, F.2
  • 44
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
    • L. I. Kuncheva and C. J. Whitaker, "Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy," Mach. Learn., vol. 51, no. 2, pp. 181-207, 2003.
    • (2003) Mach. Learn. , vol.51 , Issue.2 , pp. 181-207
    • Kuncheva, L.I.1    Whitaker, C.J.2
  • 45
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
    • T. G. Dietterich, "An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization," Machine Learning, vol. 40, no. 2, pp. 139-157, 2000.
    • (2000) Machine Learning , vol.40 , Issue.2 , pp. 139-157
    • Dietterich, T.G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.