메뉴 건너뛰기




Volumn 7, Issue 5, 2011, Pages

An Imperfect Dopaminergic Error Signal Can Drive Temporal-Difference Learning

Author keywords

[No Author keywords available]

Indexed keywords

AMINES; BEHAVIORAL RESEARCH; BIOINFORMATICS; BRAIN; ERRORS; LEARNING ALGORITHMS; MAMMALS; NEURAL NETWORKS;

EID: 79958078227     PISSN: 1553734X     EISSN: 15537358     Source Type: Journal    
DOI: 10.1371/journal.pcbi.1001133     Document Type: Article
Times cited : (40)

References (107)
  • 2
    • 0030896968 scopus 로고    scopus 로고
    • A neural substrate of prediction and reward
    • Schultz W, Dayan P, Montague PR, (1997) A neural substrate of prediction and reward. Science 275: 1593-1599.
    • (1997) Science , vol.275 , pp. 1593-1599
    • Schultz, W.1    Dayan, P.2    Montague, P.R.3
  • 3
    • 0037057755 scopus 로고    scopus 로고
    • Getting formal with dopamine and reward
    • Schultz W, (2002) Getting formal with dopamine and reward. Neuron 36: 241-263.
    • (2002) Neuron , vol.36 , pp. 241-263
    • Schultz, W.1
  • 4
    • 0029981543 scopus 로고    scopus 로고
    • A framework for mesencephalic dopamine systems based on predictive Hebbian learning
    • Montague PR, Dayan P, Sejowski TJ, (1996) A framework for mesencephalic dopamine systems based on predictive Hebbian learning. J Neurosci 16: 1936-1947.
    • (1996) J Neurosci , vol.16 , pp. 1936-1947
    • Montague, P.R.1    Dayan, P.2    Sejowski, T.J.3
  • 5
    • 33751184634 scopus 로고    scopus 로고
    • The short-latency dopamine signal: a role in discovering novel actions?
    • Redgrave P, Gurney K, (2006) The short-latency dopamine signal: a role in discovering novel actions? Nat Rev Neurosci 7: 967-975.
    • (2006) Nat Rev Neurosci , vol.7 , pp. 967-975
    • Redgrave, P.1    Gurney, K.2
  • 6
    • 33748302924 scopus 로고    scopus 로고
    • Dopamine-dependent prediction errors underpin reward-seeking behaviour in humans
    • Pessiglione M, Seymour B, Flandin G, Dolan R, Frith C, (2006) Dopamine-dependent prediction errors underpin reward-seeking behaviour in humans. Nature 442: 1042-1045.
    • (2006) Nature , vol.442 , pp. 1042-1045
    • Pessiglione, M.1    Seymour, B.2    Flandin, G.3    Dolan, R.4    Frith, C.5
  • 7
    • 0035817882 scopus 로고    scopus 로고
    • A cellular mechanism of reward-related learning
    • Reynolds JNJ, Hyland BI, Wickens JR, (2001) A cellular mechanism of reward-related learning. Nature 413: 67-70.
    • (2001) Nature , vol.413 , pp. 67-70
    • Reynolds, J.N.J.1    Hyland, B.I.2    Wickens, J.R.3
  • 8
    • 40449100017 scopus 로고    scopus 로고
    • Dopamine receptor activation is required for corticostriatal spike-timing-dependent plasticity
    • Pawlak V, Kerr JN, (2008) Dopamine receptor activation is required for corticostriatal spike-timing-dependent plasticity. J Neurosci 28: 2435-2446.
    • (2008) J Neurosci , vol.28 , pp. 2435-2446
    • Pawlak, V.1    Kerr, J.N.2
  • 9
    • 0036592025 scopus 로고    scopus 로고
    • Dopamine-dependent plasticity of corticostriatal synapses
    • Reynolds JN, Wickens JR, (2002) Dopamine-dependent plasticity of corticostriatal synapses. Neural Netw 15: 507-521.
    • (2002) Neural Netw , vol.15 , pp. 507-521
    • Reynolds, J.N.1    Wickens, J.R.2
  • 10
    • 1942520195 scopus 로고    scopus 로고
    • Dissociable roles of ventral and dorsal striatum in instrumental conditioning
    • O'Doherty J, Dayan P, Schultz J, Deichmann R, Friston K, et al. (2004) Dissociable roles of ventral and dorsal striatum in instrumental conditioning. Science 304: 452-454.
    • (2004) Science , vol.304 , pp. 452-454
    • O'Doherty, J.1    Dayan, P.2    Schultz, J.3    Deichmann, R.4    Friston, K.5
  • 11
    • 0017524329 scopus 로고
    • An adaptive optimal controller for discrete-time markov environments
    • Witten IH, (1977) An adaptive optimal controller for discrete-time markov environments. Information and Control 34: 286-295.
    • (1977) Information and Control , vol.34 , pp. 286-295
    • Witten, I.H.1
  • 12
    • 0020970738 scopus 로고
    • Neuronlike adaptive elements that can solve difficult learning control problems
    • Barto A, Sutton RS, Anderson CW, (1983) Neuronlike adaptive elements that can solve difficult learning control problems. IEEE Trans Syst Man Cybern 13: 834-846.
    • (1983) IEEE Trans Syst Man Cybern , vol.13 , pp. 834-846
    • Barto, A.1    Sutton, R.S.2    Anderson, C.W.3
  • 13
    • 33747585633 scopus 로고    scopus 로고
    • Midbrain dopamine neurons encode decisions for future action
    • Morris G, Nevet A, Arkadir D, Vaadia E, Bergman H, (2006) Midbrain dopamine neurons encode decisions for future action. Nat Neurosci 9: 1057-1063.
    • (2006) Nat Neurosci , vol.9 , pp. 1057-1063
    • Morris, G.1    Nevet, A.2    Arkadir, D.3    Vaadia, E.4    Bergman, H.5
  • 14
    • 33845882205 scopus 로고    scopus 로고
    • Separate neural substrates for skill-learning and performance in the ventral and dorsal striatum
    • Attalah HE, Lopez-Paniagua D, Rudy JW, O'Reilly RC, (2007) Separate neural substrates for skill-learning and performance in the ventral and dorsal striatum. Nat Neurosci 10: 126-131.
    • (2007) Nat Neurosci , vol.10 , pp. 126-131
    • Attalah, H.E.1    Lopez-Paniagua, D.2    Rudy, J.W.3    O'Reilly, R.C.4
  • 15
    • 0037459319 scopus 로고    scopus 로고
    • Discrete coding of reward probability and uncertainty by dopamine neurons
    • Fiorillo CD, Tobler PN, Schultz W, (2003) Discrete coding of reward probability and uncertainty by dopamine neurons. Science 299: 1898-1902.
    • (2003) Science , vol.299 , pp. 1898-1902
    • Fiorillo, C.D.1    Tobler, P.N.2    Schultz, W.3
  • 16
    • 14844349975 scopus 로고    scopus 로고
    • Adaptive coding of reward value by dopamine neurons
    • Tobler PN, Fiorillo CD, Schultz W, (2005) Adaptive coding of reward value by dopamine neurons. Science 307: 1642-1645.
    • (2005) Science , vol.307 , pp. 1642-1645
    • Tobler, P.N.1    Fiorillo, C.D.2    Schultz, W.3
  • 17
    • 3242673464 scopus 로고    scopus 로고
    • Coincident but distinct messages of midbrain dopamine and striatal tonically active neurons
    • Morris G, Arkadir D, Nevet A, Vaadia E, Bergman H, (2004) Coincident but distinct messages of midbrain dopamine and striatal tonically active neurons. Neuron 1: 133-143.
    • (2004) Neuron , vol.1 , pp. 133-143
    • Morris, G.1    Arkadir, D.2    Nevet, A.3    Vaadia, E.4    Bergman, H.5
  • 19
    • 0028972278 scopus 로고
    • Bee foraging in uncertain environments using predictive Hebbian learning
    • Montague P, Dayan P, Person C, Sejnowski T, (1995) Bee foraging in uncertain environments using predictive Hebbian learning. Nature 377: 725-728.
    • (1995) Nature , vol.377 , pp. 725-728
    • Montague, P.1    Dayan, P.2    Person, C.3    Sejnowski, T.4
  • 20
    • 0032930935 scopus 로고    scopus 로고
    • A neural network model with dopamine-like reinforcement signal that learns a spatial delayed reponse task
    • Suri R, Schultz W, (1999) A neural network model with dopamine-like reinforcement signal that learns a spatial delayed reponse task. Neuroscience 91: 871-890.
    • (1999) Neuroscience , vol.91 , pp. 871-890
    • Suri, R.1    Schultz, W.2
  • 21
    • 0035315989 scopus 로고    scopus 로고
    • Temporal difference model reproduces anticipatory neural activity
    • Suri RE, Schultz W, (2001) Temporal difference model reproduces anticipatory neural activity. Neural Comput 13: 841-862.
    • (2001) Neural Comput , vol.13 , pp. 841-862
    • Suri, R.E.1    Schultz, W.2
  • 22
    • 0036592026 scopus 로고    scopus 로고
    • Actor-critic models of the basal ganglia: new anatomical and computational perspectives
    • Joel D, Niv J, Ruppin E, (2002) Actor-critic models of the basal ganglia: new anatomical and computational perspectives. Neural Netw 15: 535-547.
    • (2002) Neural Netw , vol.15 , pp. 535-547
    • Joel, D.1    Niv, J.2    Ruppin, E.3
  • 23
    • 13244267004 scopus 로고    scopus 로고
    • Temporal sequence learning, prediction, and control: A review of different models and their relation to biological mechanisms
    • Wörgötter F, Porr B, (2005) Temporal sequence learning, prediction, and control: A review of different models and their relation to biological mechanisms. Neural Comput 17: 245-319.
    • (2005) Neural Comput , vol.17 , pp. 245-319
    • Wörgötter, F.1    Porr, B.2
  • 24
    • 0347362917 scopus 로고    scopus 로고
    • Learning spiking neural networks by reinforcement of stochastic synaptic transmission
    • Seung HS, (2003) Learning spiking neural networks by reinforcement of stochastic synaptic transmission. Neuron 40: 1063-1073.
    • (2003) Neuron , vol.40 , pp. 1063-1073
    • Seung, H.S.1
  • 25
    • 37649027755 scopus 로고    scopus 로고
    • Learning in neural networks by reinforcement of irregular spiking
    • Xie X, Seung HS, (2004) Learning in neural networks by reinforcement of irregular spiking. Phys Rev E 69: 41909.
    • (2004) Phys Rev E , vol.69 , pp. 41909
    • Xie, X.1    Seung, H.S.2
  • 26
    • 34548049545 scopus 로고    scopus 로고
    • Reinforcement learning, spike-time-dependent plasticity, and the BCM rule
    • Baras D, Meir R, (2007) Reinforcement learning, spike-time-dependent plasticity, and the BCM rule. Neural Comput 19: 2245-2279.
    • (2007) Neural Comput , vol.19 , pp. 2245-2279
    • Baras, D.1    Meir, R.2
  • 27
    • 34249708388 scopus 로고    scopus 로고
    • Reinforcement learning through modulation of spike-timing-dependent synaptic plasticity
    • Florian RV, (2007) Reinforcement learning through modulation of spike-timing-dependent synaptic plasticity. Neural Comput 19: 1468-1502.
    • (2007) Neural Comput , vol.19 , pp. 1468-1502
    • Florian, R.V.1
  • 28
    • 55449121121 scopus 로고    scopus 로고
    • A learning theory for reward-modulated spike-timing-dependent plasticity with application to biofeedback
    • Legenstein R, Pecevski D, Maass W, (2008) A learning theory for reward-modulated spike-timing-dependent plasticity with application to biofeedback. PLoS Comput Biol 4: e1000180.
    • (2008) PLoS Comput Biol , vol.4
    • Legenstein, R.1    Pecevski, D.2    Maass, W.3
  • 29
    • 74549209037 scopus 로고    scopus 로고
    • Spike-based reinforcement learning in continuous state and action space: When policy gradient methods fail
    • doi:10.1371/journal.pcbi.1000586
    • Vasilaki E, Frémaux N, Urbanczik R, Senn W, Gerstner W, (2009) Spike-based reinforcement learning in continuous state and action space: When policy gradient methods fail. PLoS Comput Biol 5: e1000586 doi:10.1371/journal.pcbi.1000586.
    • (2009) PLoS Comput Biol , vol.5
    • Vasilaki, E.1    Frémaux, N.2    Urbanczik, R.3    Senn, W.4    Gerstner, W.5
  • 30
    • 77957731196 scopus 로고    scopus 로고
    • Functional requirements for reward-modulated spike-timing-dependent plasticity
    • Frémaux N, Sprekeler H, Gerstner W, (2010) Functional requirements for reward-modulated spike-timing-dependent plasticity. J Neurosci 30: 13326-13337.
    • (2010) J Neurosci , vol.30 , pp. 13326-13337
    • Frémaux, N.1    Sprekeler, H.2    Gerstner, W.3
  • 31
    • 0035489925 scopus 로고    scopus 로고
    • Spike-timing-dependent Hebbian plasticity as temporal difference learning
    • Rao RPN, Sejnowski TJ, (2001) Spike-timing-dependent Hebbian plasticity as temporal difference learning. Neural Comput 13: 2221-2237.
    • (2001) Neural Comput , vol.13 , pp. 2221-2237
    • Rao, R.P.N.1    Sejnowski, T.J.2
  • 32
    • 37549060355 scopus 로고    scopus 로고
    • Reinforcement learning with modulated spike timing-dependent synaptic plasticity
    • Farries MA, Fairhall AL, (2007) Reinforcement learning with modulated spike timing-dependent synaptic plasticity. J Neurophysiol 98: 3648-3665.
    • (2007) J Neurophysiol , vol.98 , pp. 3648-3665
    • Farries, M.A.1    Fairhall, A.L.2
  • 33
    • 34948906745 scopus 로고    scopus 로고
    • Solving the distal reward problem through linkage of STDP and dopamine signaling
    • Izhikevich EM, (2007) Solving the distal reward problem through linkage of STDP and dopamine signaling. Cereb Cortex 17: 2443-2452.
    • (2007) Cereb Cortex , vol.17 , pp. 2443-2452
    • Izhikevich, E.M.1
  • 34
    • 67650298948 scopus 로고    scopus 로고
    • A spiking neural network model of an actor-critic learning agent
    • Potjans W, Morrison A, Diesmann M, (2009) A spiking neural network model of an actor-critic learning agent. Neural Comput 21: 301-339.
    • (2009) Neural Comput , vol.21 , pp. 301-339
    • Potjans, W.1    Morrison, A.2    Diesmann, M.3
  • 36
    • 0000541213 scopus 로고
    • Adaptive critic and the basal ganglia
    • In: Houk JC, Davis J, Beiser D, editors, Cambridge (Massachusetts), MIT Press
    • Barto AG, (1995) Adaptive critic and the basal ganglia. In: Houk JC, Davis J, Beiser D, editors. Models of Information Processing in the Basal Ganglia Cambridge (Massachusetts) MIT Press pp. 215-232.
    • (1995) Models of Information Processing in the Basal Ganglia , pp. 215-232
    • Barto, A.G.1
  • 37
    • 0000430514 scopus 로고
    • The convergence of td(λ) for general λ
    • Dayan P, (1992) The convergence of td(λ) for general λ. Mach Learn 8: 341-362.
    • (1992) Mach Learn , vol.8 , pp. 341-362
    • Dayan, P.1
  • 38
    • 0028388685 scopus 로고
    • Td(λ) converges with probability 1
    • Dayan P, Sejnowski T, (1994) Td(λ) converges with probability 1. Mach Learn 14: 295-301.
    • (1994) Mach Learn , vol.14 , pp. 295-301
    • Dayan, P.1    Sejnowski, T.2
  • 39
    • 0033968832 scopus 로고    scopus 로고
    • A model of hippocampally dependent navigation, using the temporal difference learning rule
    • Foster DJ, Morris RGM, Dayan P, (2000) A model of hippocampally dependent navigation, using the temporal difference learning rule. Hippocampus 10: 1-16.
    • (2000) Hippocampus , vol.10 , pp. 1-16
    • Foster, D.J.1    Morris, R.G.M.2    Dayan, P.3
  • 41
    • 0035379766 scopus 로고    scopus 로고
    • A computational model of action selection in the basal ganglia. i. a new functional anatomy
    • Gurney K, Prescott TJ, Redgrave P, (2001) A computational model of action selection in the basal ganglia. i. a new functional anatomy. Biol Cybern 84: 401-410.
    • (2001) Biol Cybern , vol.84 , pp. 401-410
    • Gurney, K.1    Prescott, T.J.2    Redgrave, P.3
  • 42
    • 33845662368 scopus 로고    scopus 로고
    • A physiologically plausible model of action selection and oscillatory activity in the basal ganglia
    • Humphries MD, Stewart RD, Gurney KN, (2006) A physiologically plausible model of action selection and oscillatory activity in the basal ganglia. J Neurosci 26: 12921-12942.
    • (2006) J Neurosci , vol.26 , pp. 12921-12942
    • Humphries, M.D.1    Stewart, R.D.2    Gurney, K.N.3
  • 43
    • 13744259954 scopus 로고    scopus 로고
    • Similar network activity from disparate circuit parameters
    • Prinz AA, Bucher D, Marder E, (2004) Similar network activity from disparate circuit parameters. Nat Neurosci 7: 1345-1352.
    • (2004) Nat Neurosci , vol.7 , pp. 1345-1352
    • Prinz, A.A.1    Bucher, D.2    Marder, E.3
  • 44
    • 0032144787 scopus 로고    scopus 로고
    • Do silent dopaminergic neurons exist in rat substantia nigra in vivo?
    • Dai M, Tepper JM, (1998) Do silent dopaminergic neurons exist in rat substantia nigra in vivo? Neuroscience 85: 1089-1099.
    • (1998) Neuroscience , vol.85 , pp. 1089-1099
    • Dai, M.1    Tepper, J.M.2
  • 46
    • 34548778113 scopus 로고    scopus 로고
    • Statistics of midbrain dopamine neuron spike trains in the awake primate
    • Bayer HM, Lau B, Glimcher PW, (2007) Statistics of midbrain dopamine neuron spike trains in the awake primate. J Neurophysiol 98: 1428-1439.
    • (2007) J Neurophysiol , vol.98 , pp. 1428-1439
    • Bayer, H.M.1    Lau, B.2    Glimcher, P.W.3
  • 47
    • 0026505520 scopus 로고
    • Responses of monkey dopamine neurons during learning of behavioral reactions
    • Ljungberg T, Apicella P, Schultz W, (1992) Responses of monkey dopamine neurons during learning of behavioral reactions. J Neurophysiol 67: 145-163.
    • (1992) J Neurophysiol , vol.67 , pp. 145-163
    • Ljungberg, T.1    Apicella, P.2    Schultz, W.3
  • 48
    • 0031867046 scopus 로고    scopus 로고
    • Predictive reward signal of dopamine neurons
    • Schultz W, (1998) Predictive reward signal of dopamine neurons. J Neurophysiol 80: 1-27.
    • (1998) J Neurophysiol , vol.80 , pp. 1-27
    • Schultz, W.1
  • 49
    • 78049437495 scopus 로고    scopus 로고
    • Instantaneous non-linear processing by pulse-coupled threshold units
    • Helias M, Deger M, Rotter S, Diesmann M, (2010) Instantaneous non-linear processing by pulse-coupled threshold units. PLoS Comput Biol 6: e1000929.
    • (2010) PLoS Comput Biol , vol.6
    • Helias, M.1    Deger, M.2    Rotter, S.3    Diesmann, M.4
  • 50
    • 0037187567 scopus 로고    scopus 로고
    • Spike-timing-dependent synaptic modification induced by natural spike trains
    • Froemke RC, Dan Y, (2002) Spike-timing-dependent synaptic modification induced by natural spike trains. Nature 416: 433-438.
    • (2002) Nature , vol.416 , pp. 433-438
    • Froemke, R.C.1    Dan, Y.2
  • 51
    • 0028025252 scopus 로고
    • Efflux of dopamine from the synaptic cleft in the nucleus accumbens of the rat brain
    • Garris PA, Ciolkowski EL, Pastore P, Wightman RM, (1994) Efflux of dopamine from the synaptic cleft in the nucleus accumbens of the rat brain. J Neurosci 14: 6084-6093.
    • (1994) J Neurosci , vol.14 , pp. 6084-6093
    • Garris, P.A.1    Ciolkowski, E.L.2    Pastore, P.3    Wightman, R.M.4
  • 53
    • 33748999594 scopus 로고    scopus 로고
    • Neural mechanism for stochastic behavior during a competitive game
    • Soltani A, Lee D, Wang XJ, (2006) Neural mechanism for stochastic behavior during a competitive game. Neural Netw 19: 1075-1090.
    • (2006) Neural Netw , vol.19 , pp. 1075-1090
    • Soltani, A.1    Lee, D.2    Wang, X.J.3
  • 54
    • 0037258402 scopus 로고    scopus 로고
    • Meta-learning in reinforcement learning
    • Schweighofer N, Doya K, (2003) Meta-learning in reinforcement learning. Neural Comput 16: 5-9.
    • (2003) Neural Comput , vol.16 , pp. 5-9
    • Schweighofer, N.1    Doya, K.2
  • 55
    • 0028351678 scopus 로고
    • Value-dependent selection in the brain: Simulation in a synthetic neural model
    • Friston KJ, Tononi G, Reeke GN Jr, Sporns O, Edelman GM, (1994) Value-dependent selection in the brain: Simulation in a synthetic neural model. Neuroscience 59: 229-243.
    • (1994) Neuroscience , vol.59 , pp. 229-243
    • Friston, K.J.1    Tononi, G.2    Reeke Jr., G.N.3    Sporns, O.4    Edelman, G.M.5
  • 56
    • 0029126964 scopus 로고
    • Transmitter release associated with long-term synaptic depression in rat corticostriatal slices
    • Calabresi P, Fedele E, Pisani A, Fontana G, Mercuri N, et al. (1995) Transmitter release associated with long-term synaptic depression in rat corticostriatal slices. Eur J Neurosci 7: 1889-1894.
    • (1995) Eur J Neurosci , vol.7 , pp. 1889-1894
    • Calabresi, P.1    Fedele, E.2    Pisani, A.3    Fontana, G.4    Mercuri, N.5
  • 57
    • 0004267908 scopus 로고
    • Pergamon Studies in Neuroscience. Pergamon
    • Wickens J, (1993) A Theory of the Striatum. Pergamon Studies in Neuroscience. Pergamon.
    • (1993) A Theory of the Striatum
    • Wickens, J.1
  • 58
    • 84862213022 scopus 로고    scopus 로고
    • Timing is not everything: neuromodulation opens the STDP gate
    • doi:10.3389/fnsyn.2010.00146
    • Pawlak V, Wickens JR, Kirkwood A, Kerr JND, (2010) Timing is not everything: neuromodulation opens the STDP gate. Front Syn Neurosci 2 doi:10.3389/fnsyn.2010.00146.
    • (2010) Front Syn Neurosci , vol.2
    • Pawlak, V.1    Wickens, J.R.2    Kirkwood, A.3    Kerr, J.N.D.4
  • 59
    • 77649195559 scopus 로고    scopus 로고
    • A kinetic model of dopamine- and calcium-dependent striatal synaptic plasticity
    • Nakano T, Doi T, Yoshimoto J, Doya K, (2010) A kinetic model of dopamine- and calcium-dependent striatal synaptic plasticity. PLoS Comput Biol 6: e1000670.
    • (2010) PLoS Comput Biol , vol.6
    • Nakano, T.1    Doi, T.2    Yoshimoto, J.3    Doya, K.4
  • 60
    • 33750041626 scopus 로고    scopus 로고
    • Operant matching is a generic outcome of synaptic plasticity based on the covariance between reward and neural activity
    • Loewenstein Y, Seung HS, (2006) Operant matching is a generic outcome of synaptic plasticity based on the covariance between reward and neural activity. Proc Natl Acad Sci USA 103: 15224-9.
    • (2006) Proc Natl Acad Sci USA , vol.103 , pp. 15224-15229
    • Loewenstein, Y.1    Seung, H.S.2
  • 61
    • 34147179944 scopus 로고    scopus 로고
    • A neural circuit model of flexible sensorimotor mapping: learning and forgetting on multiple timescales
    • Fusi S, Asaad WF, Miller EK, Wang XJ, (2007) A neural circuit model of flexible sensorimotor mapping: learning and forgetting on multiple timescales. Neuron 54: 319-33.
    • (2007) Neuron , vol.54 , pp. 319-333
    • Fusi, S.1    Asaad, W.F.2    Miller, E.K.3    Wang, X.J.4
  • 62
    • 73949142431 scopus 로고    scopus 로고
    • Synaptic computation underlying probabilistic inference
    • Soltani A, Wang XJ, (2010) Synaptic computation underlying probabilistic inference. Nat Neurosci 13: 112-9.
    • (2010) Nat Neurosci , vol.13 , pp. 112-119
    • Soltani, A.1    Wang, X.J.2
  • 63
    • 0032891813 scopus 로고    scopus 로고
    • Delay-dependent impairment of a matching-to-place task with chronic and intrahippocampal infusion of the nmda-antagonist d-ap5
    • Steele RJ, Morris RGMM, (1999) Delay-dependent impairment of a matching-to-place task with chronic and intrahippocampal infusion of the nmda-antagonist d-ap5. Hippocampus 9: 118-136.
    • (1999) Hippocampus , vol.9 , pp. 118-136
    • Steele, R.J.1    Morris, R.G.M.M.2
  • 64
    • 65549133778 scopus 로고    scopus 로고
    • Adult-generated hippocampal neurons allow the flexible use of spatially precise learning strategies
    • Garthe A, Behr J, Kempermann G, (2009) Adult-generated hippocampal neurons allow the flexible use of spatially precise learning strategies. PLoS ONE 4: e5464.
    • (2009) PLoS ONE , vol.4
    • Garthe, A.1    Behr, J.2    Kempermann, G.3
  • 65
    • 57349130536 scopus 로고    scopus 로고
    • Stimulus representation and the timing of reward-prediction errors in models of the dopamine system
    • Ludvig EA, Sutton RS, Kehoe EJ, (2008) Stimulus representation and the timing of reward-prediction errors in models of the dopamine system. Neural Comput 20: 3034-3054.
    • (2008) Neural Comput , vol.20 , pp. 3034-3054
    • Ludvig, E.A.1    Sutton, R.S.2    Kehoe, E.J.3
  • 66
    • 0036592008 scopus 로고    scopus 로고
    • Opponent interactions between serotonin and dopamine
    • Daw ND, Kakade S, Dayan P, (2002) Opponent interactions between serotonin and dopamine. Neural Networks 15: 603-616.
    • (2002) Neural Networks , vol.15 , pp. 603-616
    • Daw, N.D.1    Kakade, S.2    Dayan, P.3
  • 67
    • 0035341482 scopus 로고    scopus 로고
    • Fear and feeding in the nucleus accumbens shell: Rostrocaudal segregation of gaba-elicited defensive behavior versus eating behavior
    • Reynolds SM, Berridge KC, (2001) Fear and feeding in the nucleus accumbens shell: Rostrocaudal segregation of gaba-elicited defensive behavior versus eating behavior. J Neurosci 21: 3261-3270.
    • (2001) J Neurosci , vol.21 , pp. 3261-3270
    • Reynolds, S.M.1    Berridge, K.C.2
  • 68
    • 0037104732 scopus 로고    scopus 로고
    • Positive and negative motivation in nucleus accumbens shell: Bivalent rostrocaudal gradients for gaba-elicited eating, taste "liking"/"disliking" reactions, place preference/avoidance, and fear
    • Reynolds SM, Berridge KC, (2002) Positive and negative motivation in nucleus accumbens shell: Bivalent rostrocaudal gradients for gaba-elicited eating, taste "liking"/"disliking" reactions, place preference/avoidance, and fear. J Neurosci 22: 7308-7320.
    • (2002) J Neurosci , vol.22 , pp. 7308-7320
    • Reynolds, S.M.1    Berridge, K.C.2
  • 69
    • 34247869023 scopus 로고    scopus 로고
    • Differential encoding of losses and gains in the human striatum
    • Seymour B, Daw N, Dayan P, Singer T, Dolan R, (2007) Differential encoding of losses and gains in the human striatum. J Neurosci 27: 4826-4831.
    • (2007) J Neurosci , vol.27 , pp. 4826-4831
    • Seymour, B.1    Daw, N.2    Dayan, P.3    Singer, T.4    Dolan, R.5
  • 70
    • 33748709841 scopus 로고    scopus 로고
    • Dissociable systems for gain- and loss-related value predictions and errors of prediction in the human brain
    • Yacubian J, Gläscher J, Schroeder K, Sommer T, Braus DF, et al. (2006) Dissociable systems for gain- and loss-related value predictions and errors of prediction in the human brain. J Neurosci 26: 9530-9537.
    • (2006) J Neurosci , vol.26 , pp. 9530-9537
    • Yacubian, J.1    Gläscher, J.2    Schroeder, K.3    Sommer, T.4    Braus, D.F.5
  • 71
    • 0023160290 scopus 로고
    • Gabaa andgabab receptor site distribution in the rat central nervous system
    • Bowery N, Hudson A, Price G, (1987) Gabaa andgabab receptor site distribution in the rat central nervous system. Neuroscience 20: 365-383.
    • (1987) Neuroscience , vol.20 , pp. 365-383
    • Bowery, N.1    Hudson, A.2    Price, G.3
  • 72
    • 0027993973 scopus 로고
    • Inhibitory synaptic potentials in guinea-pig substantia nigra dopamine neurones in vitro
    • Häusser MA, Yung WH, (1994) Inhibitory synaptic potentials in guinea-pig substantia nigra dopamine neurones in vitro. J Physiol 479: 401-422.
    • (1994) J Physiol , vol.479 , pp. 401-422
    • Häusser, M.A.1    Yung, W.H.2
  • 73
    • 0026611457 scopus 로고
    • Synaptic inputs to gabaa and gabab receptors originate from discrete afferent neurons
    • Sugita S, Johnson SW, North RA, (1992) Synaptic inputs to gabaa and gabab receptors originate from discrete afferent neurons. Neurosci Lett 134: 207-211.
    • (1992) Neurosci Lett , vol.134 , pp. 207-211
    • Sugita, S.1    Johnson, S.W.2    North, R.A.3
  • 74
    • 0029141116 scopus 로고
    • Gabaa receptor-mediated inhibition of rat substantia nigra dopaminergic neurons by pars reticulata projection neurons
    • Tepper JM, Martin L, Anderson DR, (1995) Gabaa receptor-mediated inhibition of rat substantia nigra dopaminergic neurons by pars reticulata projection neurons. J Neurosci 15: 3092-3103.
    • (1995) J Neurosci , vol.15 , pp. 3092-3103
    • Tepper, J.M.1    Martin, L.2    Anderson, D.R.3
  • 75
    • 0032941795 scopus 로고    scopus 로고
    • Striatal, pallidal, and pars reticulata evoked inhibition of nigrostriatal dopaminergic neurons is mediated by gabaa receptors in vivo
    • Paladini CA, Celada P, Tepper JM, (1999) Striatal, pallidal, and pars reticulata evoked inhibition of nigrostriatal dopaminergic neurons is mediated by gabaa receptors in vivo. Neuroscience 89: 799-812.
    • (1999) Neuroscience , vol.89 , pp. 799-812
    • Paladini, C.A.1    Celada, P.2    Tepper, J.M.3
  • 76
    • 55249107648 scopus 로고    scopus 로고
    • Gabaergic afferents activate both gabaa and gabab receptors in mouse substantia nigra dopaminergic neurons in vivo
    • Brazhnik E, Shah F, Tepper JM, (2008) Gabaergic afferents activate both gabaa and gabab receptors in mouse substantia nigra dopaminergic neurons in vivo. J Neurosci 28: 10386-10398.
    • (2008) J Neurosci , vol.28 , pp. 10386-10398
    • Brazhnik, E.1    Shah, F.2    Tepper, J.M.3
  • 77
    • 0035961179 scopus 로고    scopus 로고
    • Modeling functions of striatal dopamine modulation in learning and planning
    • Suri RE, Bargas J, Arbib MA, (2001) Modeling functions of striatal dopamine modulation in learning and planning. Neuroscience 103: 65-85.
    • (2001) Neuroscience , vol.103 , pp. 65-85
    • Suri, R.E.1    Bargas, J.2    Arbib, M.A.3
  • 78
    • 0031931935 scopus 로고    scopus 로고
    • A computational model of how the basal ganglia produce sequences
    • Berns GS, Sejnowski TJ, (1998) A computational model of how the basal ganglia produce sequences. J Cogn Neurosci 10: 108-121.
    • (1998) J Cogn Neurosci , vol.10 , pp. 108-121
    • Berns, G.S.1    Sejnowski, T.J.2
  • 79
    • 0032985814 scopus 로고    scopus 로고
    • A predictive reinforcement model of dopamine neurons for learning approach behavior
    • Contreras-Vidal JL, Schultz W, (1999) A predictive reinforcement model of dopamine neurons for learning approach behavior. J Comput Neurosci 6: 191-214.
    • (1999) J Comput Neurosci , vol.6 , pp. 191-214
    • Contreras-Vidal, J.L.1    Schultz, W.2
  • 80
    • 0033508899 scopus 로고    scopus 로고
    • How the basal ganglia use parallel excitatory and inhibitory learning pathways to selectively respond to unexpected rewarding cues
    • Brown J, Bullock D, Grossberg S, (1999) How the basal ganglia use parallel excitatory and inhibitory learning pathways to selectively respond to unexpected rewarding cues. J Neurosci 19: 10502-10511.
    • (1999) J Neurosci , vol.19 , pp. 10502-10511
    • Brown, J.1    Bullock, D.2    Grossberg, S.3
  • 81
    • 34347343926 scopus 로고    scopus 로고
    • Lateral habenula as a source of negative reward signals in dopamine neurons
    • Matsumoto M, Hikosaka O, (2007) Lateral habenula as a source of negative reward signals in dopamine neurons. Nature 447: 1111-1117.
    • (2007) Nature , vol.447 , pp. 1111-1117
    • Matsumoto, M.1    Hikosaka, O.2
  • 82
    • 0020118274 scopus 로고
    • Neural networks and physical systems with emergent collective computational abilities
    • Hopfield JJ, (1982) Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci USA 79: 2554-2558.
    • (1982) Proc Natl Acad Sci USA , vol.79 , pp. 2554-2558
    • Hopfield, J.J.1
  • 83
    • 70449651825 scopus 로고    scopus 로고
    • Generating variable birdsong syllable sequences with branching chain networks in avian premotor nucleus HVC
    • Jin DZ, (2009) Generating variable birdsong syllable sequences with branching chain networks in avian premotor nucleus HVC. Phys Rev E 80: 051902.
    • (2009) Phys Rev E , vol.80 , pp. 051902
    • Jin, D.Z.1
  • 84
    • 79960107734 scopus 로고    scopus 로고
    • Compositionality of arm movements can be realized by propagating synchrony
    • E-pub ahead of print. doi:10.1007/s10827-010-0285-9
    • Hanuschkin A, Herrmann JM, Morrison A, Diesmann M, (2010) Compositionality of arm movements can be realized by propagating synchrony. J Comput Neurosci E-pub ahead of print. doi:10.1007/s10827-010-0285-9.
    • (2010) J Comput Neurosci
    • Hanuschkin, A.1    Herrmann, J.M.2    Morrison, A.3    Diesmann, M.4
  • 85
    • 79958144797 scopus 로고    scopus 로고
    • A compositionality machine realized by a hierarchic architecture of synfire chains
    • Schrader S, Diesmann M, Morrison A, (2010) A compositionality machine realized by a hierarchic architecture of synfire chains. Front Comput Neurosci 4: 154.
    • (2010) Front Comput Neurosci , vol.4 , pp. 154
    • Schrader, S.1    Diesmann, M.2    Morrison, A.3
  • 86
    • 2942617032 scopus 로고    scopus 로고
    • Temporal difference models describe higher-order learning in humans
    • Seymour B, O'Doherty J, Dayan P, Koltzenburg M, Jones A, et al. (2004) Temporal difference models describe higher-order learning in humans. Nature 429: 664-667.
    • (2004) Nature , vol.429 , pp. 664-667
    • Seymour, B.1    O'Doherty, J.2    Dayan, P.3    Koltzenburg, M.4    Jones, A.5
  • 87
    • 0028927382 scopus 로고
    • Distributed modular architectures linking basal ganglia, cerebellum, and cerebral cortex: Their role in planning and controlling action
    • Houk JC, Wise SP, (1995) Distributed modular architectures linking basal ganglia, cerebellum, and cerebral cortex: Their role in planning and controlling action. Cereb Cortex 5: 95-110.
    • (1995) Cereb Cortex , vol.5 , pp. 95-110
    • Houk, J.C.1    Wise, S.P.2
  • 88
    • 20644468390 scopus 로고    scopus 로고
    • Agents of the mind
    • Houk JC, (2005) Agents of the mind. Biol Cybern 92: 427-437.
    • (2005) Biol Cybern , vol.92 , pp. 427-437
    • Houk, J.C.1
  • 89
    • 79958106405 scopus 로고    scopus 로고
    • Models of basal ganglia
    • Houk JC, (2007) Models of basal ganglia. Scholarpedia 2: 1633.
    • (2007) Scholarpedia , vol.2 , pp. 1633
    • Houk, J.C.1
  • 90
    • 0036319460 scopus 로고    scopus 로고
    • Clinical aspects of parkinson disease
    • Sethi KD, (2002) Clinical aspects of parkinson disease. Curr Opin Neurol 15: 457-460.
    • (2002) Curr Opin Neurol , vol.15 , pp. 457-460
    • Sethi, K.D.1
  • 91
    • 0029815726 scopus 로고    scopus 로고
    • A neostriatal habit learning system in humans
    • Knowlton BJ, Mangels JA, Squire LR, (1996) A neostriatal habit learning system in humans. Science 273: 1399-1420.
    • (1996) Science , vol.273 , pp. 1399-1420
    • Knowlton, B.J.1    Mangels, J.A.2    Squire, L.R.3
  • 92
    • 0027245532 scopus 로고
    • A triple dissociation of memory systems: hippocampus, amygdala, and dorsal striatum
    • McDonald RJ, White NM, (1993) A triple dissociation of memory systems: hippocampus, amygdala, and dorsal striatum. Behav Neurosci 107: 3-22.
    • (1993) Behav Neurosci , vol.107 , pp. 3-22
    • McDonald, R.J.1    White, N.M.2
  • 93
    • 0003066891 scopus 로고
    • Time-derivative models of pavlovian reinforcement
    • In: Gabriel M, Moore J, editors, Cambridge (Massachusetts), MIT Press
    • Sutton RS, Barto AG, (1990) Time-derivative models of pavlovian reinforcement. In: Gabriel M, Moore J, editors. Learning and Computational Neuroscience Cambridge (Massachusetts) MIT Press pp. 497-537.
    • (1990) Learning and Computational Neuroscience , pp. 497-537
    • Sutton, R.S.1    Barto, A.G.2
  • 94
    • 0036972336 scopus 로고    scopus 로고
    • Evolution of reinforcement learning in uncertain environments: A simple explanation for complex foraging behaviors
    • Niv Y, Joel D, Meilijson I, Ruppin E, (2002) Evolution of reinforcement learning in uncertain environments: A simple explanation for complex foraging behaviors. Adapt Behav 10: 5-24.
    • (2002) Adapt Behav , vol.10 , pp. 5-24
    • Niv, Y.1    Joel, D.2    Meilijson, I.3    Ruppin, E.4
  • 95
    • 0034524427 scopus 로고    scopus 로고
    • Complementary roles of basal ganglia and cerebellum in learning and motor control
    • Doya K, (2000) Complementary roles of basal ganglia and cerebellum in learning and motor control. Curr Opin Neurol 10: 732-739.
    • (2000) Curr Opin Neurol , vol.10 , pp. 732-739
    • Doya, K.1
  • 96
    • 50949100487 scopus 로고    scopus 로고
    • Modeling the violation of reward maximization and invariance in reinforcement schedules
    • La Camera G, Richmond BJ, (2008) Modeling the violation of reward maximization and invariance in reinforcement schedules. PLoS Comput Biol 4: e1000131.
    • (2008) PLoS Comput Biol , vol.4
    • La Camera, G.1    Richmond, B.J.2
  • 97
    • 61449173026 scopus 로고    scopus 로고
    • Prospective and retrospective temporal difference learning
    • Dayan P, (2009) Prospective and retrospective temporal difference learning. Network Comput Neural Syst 20: 32-46.
    • (2009) Network Comput Neural Syst , vol.20 , pp. 32-46
    • Dayan, P.1
  • 98
    • 67349098495 scopus 로고    scopus 로고
    • Two types of dopamine neuron distinctly convey positive and negative motivational signals
    • Matsumoto M, Hikosaka O, (2009) Two types of dopamine neuron distinctly convey positive and negative motivational signals. Nature 459: 837-842.
    • (2009) Nature , vol.459 , pp. 837-842
    • Matsumoto, M.1    Hikosaka, O.2
  • 99
  • 100
    • 0142250829 scopus 로고    scopus 로고
    • Hyperdopaminergic mutant mice have higher "wanting" but not "liking" for sweet rewards
    • Pecina S, Cagniard B, Berridge KC, Aldridge JW, Zhuang X, (2003) Hyperdopaminergic mutant mice have higher "wanting" but not "liking" for sweet rewards. J Neurosci 23: 9395-402.
    • (2003) J Neurosci , vol.23 , pp. 9395-9402
    • Pecina, S.1    Cagniard, B.2    Berridge, K.C.3    Aldridge, J.W.4    Zhuang, X.5
  • 101
    • 0034061668 scopus 로고    scopus 로고
    • Mesolimbocortical and nigrostriatal dopamine responses to salient non-reward events
    • Horvitz JC, (2000) Mesolimbocortical and nigrostriatal dopamine responses to salient non-reward events. Neuroscience 96: 651-656.
    • (2000) Neuroscience , vol.96 , pp. 651-656
    • Horvitz, J.C.1
  • 102
    • 0033119561 scopus 로고    scopus 로고
    • Is the short-latency dopamine response too short to signal reward error?
    • Redgrave P, Prescott TJ, Gurney K, (1999) Is the short-latency dopamine response too short to signal reward error? Trends Neurosci 22: 146-151.
    • (1999) Trends Neurosci , vol.22 , pp. 146-151
    • Redgrave, P.1    Prescott, T.J.2    Gurney, K.3
  • 103
    • 35549002871 scopus 로고    scopus 로고
    • Learning with relevance: Using a third factor to stabilise hebbian learning
    • Porr B, Wörgötter F, (2007) Learning with relevance: Using a third factor to stabilise hebbian learning. Neural Comput 19: 2694-2719.
    • (2007) Neural Comput , vol.19 , pp. 2694-2719
    • Porr, B.1    Wörgötter, F.2
  • 104
  • 105
    • 79958093750 scopus 로고    scopus 로고
    • Enabling functional neural circuit simulations with distributed computing of neuromodulated plasticity
    • doi:10.3389/fncom.2010.00141
    • Potjans W, Morrison A, Diesmann M, (2010) Enabling functional neural circuit simulations with distributed computing of neuromodulated plasticity. Front Comput Neurosci 4 doi:10.3389/fncom.2010.00141.
    • (2010) Front Comput Neurosci
    • Potjans, W.1    Morrison, A.2    Diesmann, M.3
  • 107
    • 70049083053 scopus 로고    scopus 로고
    • Towards reproducible descriptions of neuronal network models
    • Nordlie E, Gewaltig MO, Plesser HE, (2009) Towards reproducible descriptions of neuronal network models. PLoS Comput Biol 5: e1000456.
    • (2009) PLoS Comput Biol , vol.5
    • Nordlie, E.1    Gewaltig, M.O.2    Plesser, H.E.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.