메뉴 건너뛰기




Volumn 6, Issue 9, 2010, Pages

Instantaneous non-linear processing by pulse-coupled threshold units

Author keywords

[No Author keywords available]

Indexed keywords

NEURAL NETWORKS; NEURONS;

EID: 78049437495     PISSN: 1553734X     EISSN: 15537358     Source Type: Journal    
DOI: 10.1371/journal.pcbi.1000929     Document Type: Article
Times cited : (27)

References (65)
  • 1
    • 11844290435 scopus 로고
    • A theoretical analysis of neuronal variability
    • Stein RB (1965) A theoretical analysis of neuronal variability. Biophys J 5: 173-194.
    • (1965) Biophys J , vol.5 , pp. 173-194
    • Stein, R.B.1
  • 2
    • 0033220632 scopus 로고    scopus 로고
    • Exact digital simulation of time-invariant linear systems with applications to neuronal modeling
    • Rotter S, Diesmann M (1999) Exact digital simulation of time-invariant linear systems with applications to neuronal modeling. Biol Cybern 81: 381-402.
    • (1999) Biol Cybern , vol.81 , pp. 381-402
    • Rotter, S.1    Diesmann, M.2
  • 4
    • 0141565240 scopus 로고    scopus 로고
    • Neocortical pyramidal cells respond as integrate-and-fire neurons to in vivo like input currents
    • Rauch A, La Camera G, Lüscher H, Senn W, Fusi S (2003) Neocortical pyramidal cells respond as integrate-and-fire neurons to in vivo like input currents. J Neurophysiol 90: 1598-1612.
    • (2003) J Neurophysiol , vol.90 , pp. 1598-1612
    • Rauch, A.1    La Camera, G.2    Lüscher, H.3    Senn, W.4    Fusi, S.5
  • 5
    • 4344670177 scopus 로고    scopus 로고
    • Minimal models of adapted neuronal response to in vivo-like input currents
    • La Camera G, Rauch A, Luscher H, Senn W, Fusi S (2004) Minimal models of adapted neuronal response to in vivo-like input currents. Neural Comput 10: 2101-2124.
    • (2004) Neural Comput , vol.10 , pp. 2101-2124
    • La Camera, G.1    Rauch, A.2    Luscher, H.3    Senn, W.4    Fusi, S.5
  • 6
    • 41049097311 scopus 로고    scopus 로고
    • A benchmark test for a quantitative assessment of simple neuron models
    • Jovilet R, Kobayashi R, Rauch A, Naud R, Shinomoto S, et al. (2008) A benchmark test for a quantitative assessment of simple neuron models. J Neurosci Methods 169: 417-424.
    • (2008) J Neurosci Methods , vol.169 , pp. 417-424
    • Jovilet, R.1    Kobayashi, R.2    Rauch, A.3    Naud, R.4    Shinomoto, S.5
  • 7
    • 4344661328 scopus 로고    scopus 로고
    • Which model to use for cortical spiking neurons?
    • Izhikevich E (2004) Which model to use for cortical spiking neurons? IEEE Trans Neural Netw 5: 1063-1070.
    • (2004) IEEE Trans Neural Netw , vol.5 , pp. 1063-1070
    • Izhikevich, E.1
  • 8
    • 0018606356 scopus 로고
    • The Ornstein-Uhlenbeck process as a model for neuronal activity
    • Ricciardi LM, Sacerdote L (1979) The Ornstein-Uhlenbeck process as a model for neuronal activity. Biol Cybern 35: 1-9.
    • (1979) Biol Cybern , vol.35 , pp. 1-9
    • Ricciardi, L.M.1    Sacerdote, L.2
  • 10
    • 36149019489 scopus 로고
    • On the first passage time probability problem
    • Siegert AJ (1951) On the first passage time probability problem. Phys Rev 81: 617-623.
    • (1951) Phys Rev , vol.81 , pp. 617-623
    • Siegert, A.J.1
  • 11
    • 0002525530 scopus 로고
    • Diffusion models for the stochastic activity of neurons
    • In: Caianiello ER, ed., June 1967 Springer-Verlag Verlag
    • Johannesma PIM (1968) Diffusion models for the stochastic activity of neurons. In: Caianiello ER, ed. Neural Networks: Proceedings of the School on Neural Networks Ravello, June 1967 Springer-Verlag Verlag. pp 116-144.
    • (1968) Neural Networks: Proceedings of the School on Neural Networks Ravello , pp. 116-144
    • Johannesma, P.I.M.1
  • 12
    • 6644226801 scopus 로고    scopus 로고
    • Effects of synaptic noise and filtering on the frequency response of spiking neurons
    • Brunel N, Chance FS, Fourcaud N, Abbott LF (2001) Effects of synaptic noise and filtering on the frequency response of spiking neurons. Phys Rev Lett 86: 2186-2189.
    • (2001) Phys Rev Lett , vol.86 , pp. 2186-2189
    • Brunel, N.1    Chance, F.S.2    Fourcaud, N.3    Abbott, L.F.4
  • 13
    • 0036716145 scopus 로고    scopus 로고
    • Dynamics of the firing probability of noisy integrate-and-fire neurons
    • Fourcaud N, Brunel N (2002) Dynamics of the firing probability of noisy integrate-and-fire neurons. Neural Comput 14: 2057-2110.
    • (2002) Neural Comput , vol.14 , pp. 2057-2110
    • Fourcaud, N.1    Brunel, N.2
  • 14
    • 32644485094 scopus 로고    scopus 로고
    • Auto- and crosscorrelograms for the spike response of leaky integrate-and-fire neurons with slow synapses
    • Moreno-Bote R, Parga N (2006) Auto- and crosscorrelograms for the spike response of leaky integrate-and-fire neurons with slow synapses. Phys Rev Lett 96: 028101.
    • (2006) Phys Rev Lett , vol.96 , pp. 028101
    • Moreno-Bote, R.1    Parga, N.2
  • 15
    • 38349142170 scopus 로고    scopus 로고
    • Efficient evaluation of neuron populations receiving colored-noise current based on a refractory density method
    • Chizhov AV, Graham LJ (2008) Efficient evaluation of neuron populations receiving colored-noise current based on a refractory density method. Phys Rev E 77: 011910.
    • (2008) Phys Rev E , vol.77 , pp. 011910
    • Chizhov, A.V.1    Graham, L.J.2
  • 16
    • 0034479938 scopus 로고    scopus 로고
    • Dynamics of neuronal populations: The equilibrium solution
    • Sirovich L, Omurtag A, Knight BW (2000) Dynamics of neuronal populations: The equilibrium solution. SIAM J Appl Math 60: 2009-2028.
    • (2000) SIAM J Appl Math , vol.60 , pp. 2009-2028
    • Sirovich, L.1    Omurtag, A.2    Knight, B.W.3
  • 17
    • 0346847618 scopus 로고    scopus 로고
    • Dynamics of neuronal populations: Eigenfunction theory; some solvable cases
    • Sirovich L (2003) Dynamics of neuronal populations: eigenfunction theory; some solvable cases. Network: Comput Neural Systems 14: 249-272.
    • (2003) Network: Comput Neural Systems , vol.14 , pp. 249-272
    • Sirovich, L.1
  • 18
  • 19
    • 0035278272 scopus 로고    scopus 로고
    • Shot noise in the leaky integrate-and-fire neuron
    • Hohn N, Burkitt AN (2001) Shot noise in the leaky integrate-and-fire neuron. Phys Rev E 63: 1-11.
    • (2001) Phys Rev E , vol.63 , pp. 1-11
    • Hohn, N.1    Burkitt, A.N.2
  • 20
    • 42449158079 scopus 로고    scopus 로고
    • Method to calculate the moments of the membrane voltage in a model neuron driven by multiplicative filtered shot noise
    • Wolff L, Lindner B (2008) Method to calculate the moments of the membrane voltage in a model neuron driven by multiplicative filtered shot noise. Phys Rev E 77.
    • (2008) Phys Rev E , pp. 77
    • Wolff, L.1    Lindner, B.2
  • 21
    • 34447565928 scopus 로고    scopus 로고
    • Exit times for a class of piecewise exponential markov processes with two-sided jumps
    • Jacobsen M, Jensen AT (2007) Exit times for a class of piecewise exponential markov processes with two-sided jumps. Stoch Proc Appl 117: 1330-1356.
    • (2007) Stoch Proc Appl , vol.117 , pp. 1330-1356
    • Jacobsen, M.1    Jensen, A.T.2
  • 22
    • 0033210816 scopus 로고    scopus 로고
    • Fast global oscillations in networks of integrate-andfire neurons with low firing rates
    • Brunel N, Hakim V (1999) Fast global oscillations in networks of integrate-andfire neurons with low firing rates. Neural Comput 11: 1621-1671.
    • (1999) Neural Comput , vol.11 , pp. 1621-1671
    • Brunel, N.1    Hakim, V.2
  • 23
    • 0035794252 scopus 로고    scopus 로고
    • Transmission of noise coded versus additive signals through a neuronal ensemble
    • Lindner B, Schimansky-Geier L (2001) Transmission of noise coded versus additive signals through a neuronal ensemble. Phys Rev Lett 86: 2934-2937.
    • (2001) Phys Rev Lett , vol.86 , pp. 2934-2937
    • Lindner, B.1    Schimansky-Geier, L.2
  • 24
    • 0033630628 scopus 로고    scopus 로고
    • Population dynamics of spiking neurons: Fast transients, asynchronous states, and locking
    • Gerstner W (2000) Population dynamics of spiking neurons: fast transients, asynchronous states, and locking. Neural Comput 12: 43-89.
    • (2000) Neural Comput , vol.12 , pp. 43-89
    • Gerstner, W.1
  • 25
    • 0027485141 scopus 로고
    • Noise enhancement of information transfer in crayfish mechanoreceptors by stochastic resonance
    • Douglass JK, Wilkens L, Pantazelou E, Moss F (1993) Noise enhancement of information transfer in crayfish mechanoreceptors by stochastic resonance. Nature 365: 337-340.
    • (1993) Nature , vol.365 , pp. 337-340
    • Douglass, J.K.1    Wilkens, L.2    Pantazelou, E.3    Moss, F.4
  • 26
    • 0029978336 scopus 로고    scopus 로고
    • Broadband neural encoding in the cricket cereal sensory system enhanced by stochastic resonance
    • Levin JE, Miller JP (1996) Broadband neural encoding in the cricket cereal sensory system enhanced by stochastic resonance. Nature 380: 165-168.
    • (1996) Nature , vol.380 , pp. 165-168
    • Levin, J.E.1    Miller, J.P.2
  • 28
    • 67049117862 scopus 로고    scopus 로고
    • What is stochastic resonance? definitions, misconceptions, debates, and its relevance to biology
    • doi:10.1371/journal.pcbi.1000348
    • McDonnell MD, Abbott D (2009) What is stochastic resonance? definitions, misconceptions, debates, and its relevance to biology. PLoS Comput Biol 5: e1000348. doi:10.1371/journal.pcbi.1000348.
    • (2009) PLoS Comput Biol , vol.5
    • McDonnell, M.D.1    Abbott, D.2
  • 29
    • 0034006515 scopus 로고    scopus 로고
    • Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons
    • Brunel N (2000) Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. J Comput Neurosci 8: 183-208.
    • (2000) J Comput Neurosci , vol.8 , pp. 183-208
    • Brunel, N.1
  • 30
    • 0037706879 scopus 로고    scopus 로고
    • The spread of rate and correlation in stationary cortical networks
    • Tetzlaff T, Buschermöhle M, Geisel T, Diesmann M (2003) The spread of rate and correlation in stationary cortical networks. Neurocomputing 52-54: 949-954.
    • (2003) Neurocomputing , vol.52-54 , pp. 949-954
    • Tetzlaff, T.1    Buschermöhle, M.2    Geisel, T.3    Diesmann, M.4
  • 31
    • 34547928124 scopus 로고    scopus 로고
    • Correlation between neural spike trains increases with firing rate
    • De la Rocha J, Doiron B, Shea-Brown E, Kresimir J, Reyes A (2007) Correlation between neural spike trains increases with firing rate. Nature 448: 802-807.
    • (2007) Nature , vol.448 , pp. 802-807
    • de la Rocha, J.1    Doiron, B.2    Shea-Brown, E.3    Kresimir, J.4    Reyes, A.5
  • 33
    • 43949102027 scopus 로고    scopus 로고
    • Phenomenological models of synaptic plasticity based on spike-timing
    • Morrison A, Diesmann M, Gerstner W (2008) Phenomenological models of synaptic plasticity based on spike-timing. Biol Cybern 98: 459-478.
    • (2008) Biol Cybern , vol.98 , pp. 459-478
    • Morrison, A.1    Diesmann, M.2    Gerstner, W.3
  • 34
    • 67349159604 scopus 로고    scopus 로고
    • Structural plasticity controlled by calcium based correlation detection
    • doi:103389/neuro.10.007.2008
    • Helias M, Rotter S, Gewaltig M, Diesmann M (2008) Structural plasticity controlled by calcium based correlation detection. Front Comput Neurosci 2: doi:10.3389/neuro.10.007.2008.
    • (2008) Front Comput Neurosci , vol.2
    • Helias, M.1    Rotter, S.2    Gewaltig, M.3    Diesmann, M.4
  • 35
    • 68949211777 scopus 로고    scopus 로고
    • Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks. I. Input selectivity - strengthening correlated input pathways
    • Gilson M, Burkitt AN, Grayden DB, Thomas DA, van Hemmen JL (2009) Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks. I. Input selectivity - strengthening correlated input pathways. Biol Cybern 101: 81-102.
    • (2009) Biol Cybern , vol.101 , pp. 81-102
    • Gilson, M.1    Burkitt, A.N.2    Grayden, D.B.3    Thomas, D.A.4    van Hemmen, J.L.5
  • 36
    • 68949214346 scopus 로고    scopus 로고
    • Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks. II. Input selectivity - symmetry breaking
    • Gilson M, Burkitt AN, Grayden DB, Thomas DA, van Hemmen JL (2009) Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks. II. Input selectivity - symmetry breaking. Biol Cybern 101: 103-114.
    • (2009) Biol Cybern , vol.101 , pp. 103-114
    • Gilson, M.1    Burkitt, A.N.2    Grayden, D.B.3    Thomas, D.A.4    van Hemmen, J.L.5
  • 37
    • 72149130262 scopus 로고    scopus 로고
    • Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks III. Partially connected neurons driven by spontaneous activity
    • Gilson M, Burkitt AN, Grayden DB, Thomas DA, van Hemmen JL (2009) Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks III. Partially connected neurons driven by spontaneous activity. Biol Cybern 101: 411-426.
    • (2009) Biol Cybern , vol.101 , pp. 411-426
    • Gilson, M.1    Burkitt, A.N.2    Grayden, D.B.3    Thomas, D.A.4    van Hemmen, J.L.5
  • 38
    • 72149124488 scopus 로고    scopus 로고
    • Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks IV. Structuring synaptic pathways among recurrent connections
    • Gilson M, Burkitt AN, Grayden DB, Thomas DA, van Hemmen JL (2009) Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks IV. Structuring synaptic pathways among recurrent connections. Biol Cybern 101: 427-444.
    • (2009) Biol Cybern , vol.101 , pp. 427-444
    • Gilson, M.1    Burkitt, A.N.2    Grayden, D.B.3    Thomas, D.A.4    van Hemmen, J.L.5
  • 39
    • 34548099438 scopus 로고    scopus 로고
    • Firing-rate response of linear and nonlinear integrateand- fire neurons to modulated current-based and conductance-based synaptic drive
    • Richardson MJE (2007) Firing-rate response of linear and nonlinear integrateand- fire neurons to modulated current-based and conductance-based synaptic drive. Phys Rev E 76: 1-15.
    • (2007) Phys Rev E , vol.76 , pp. 1-15
    • Richardson, M.J.E.1
  • 40
    • 56449130455 scopus 로고    scopus 로고
    • Spike-train spectra and network response functions for non-linear integrate-and-fire neurons
    • Richardson MJE (2008) Spike-train spectra and network response functions for non-linear integrate-and-fire neurons. Biol Cybern 99: 381-392.
    • (2008) Biol Cybern , vol.99 , pp. 381-392
    • Richardson, M.J.E.1
  • 41
    • 0042827510 scopus 로고    scopus 로고
    • A simple and stable numerical solution for the population density equation
    • De Kamps M (2003) A simple and stable numerical solution for the population density equation. Neural Comput 15: 2129-2146.
    • (2003) Neural Comput , vol.15 , pp. 2129-2146
    • De Kamps, M.1
  • 42
    • 49649123252 scopus 로고    scopus 로고
    • Internal brain state regulates membrane potential synchrony in barrel cortex of behaving mice
    • Poulet J, Petersen C (2008) Internal brain state regulates membrane potential synchrony in barrel cortex of behaving mice. Nature 454: 881-5.
    • (2008) Nature , vol.454 , pp. 881-885
    • Poulet, J.1    Petersen, C.2
  • 43
    • 45749143600 scopus 로고    scopus 로고
    • The mechanism of synchronization in feedforward neuronal networks
    • Goedeke S, Diesmann M (2008) The mechanism of synchronization in feedforward neuronal networks. New J Phys 10: 015007.
    • (2008) New J Phys , vol.10 , pp. 015007
    • Goedeke, S.1    Diesmann, M.2
  • 44
    • 33846013910 scopus 로고    scopus 로고
    • Exact subthreshold integration with continuous spike times in discrete time neural network simulations
    • Morrison A, Straube S, Plesser HE, Diesmann M (2007) Exact subthreshold integration with continuous spike times in discrete time neural network simulations. Neural Comput 19: 47-79.
    • (2007) Neural Comput , vol.19 , pp. 47-79
    • Morrison, A.1    Straube, S.2    Plesser, H.E.3    Diesmann, M.4
  • 46
    • 0001571879 scopus 로고    scopus 로고
    • An outline of theoretical and algorithmic approaches to first passage time problems with applications to biological modeling
    • Ricciardi LM, Di Crescenzo A, Giorno V, Nobile AG (1999) An outline of theoretical and algorithmic approaches to first passage time problems with applications to biological modeling. MathJaponica 50: 247-322.
    • (1999) MathJaponica , vol.50 , pp. 247-322
    • Ricciardi, L.M.1    Di Crescenzo, A.2    Giorno, V.3    Nobile, A.G.4
  • 47
    • 0001692724 scopus 로고
    • Activation rates for nonlinear stochastic flows driven by non-gaussian noise
    • Van den Broeck C, Hänggi P (1984) Activation rates for nonlinear stochastic flows driven by non-gaussian noise. Phys Rev A 30: 2730-2736.
    • (1984) Phys Rev A , vol.30 , pp. 2730-2736
    • van den Broeck, C.1    Hänggi, P.2
  • 48
    • 4243620953 scopus 로고
    • First-passage time problems for non-Markovian processes
    • Hanggi P, Talkner P (1985) First-passage time problems for non-Markovian processes. Phys Rev A 32: 1934-1937.
    • (1985) Phys Rev A , vol.32 , pp. 1934-1937
    • Hanggi, P.1    Talkner, P.2
  • 49
    • 78049438383 scopus 로고    scopus 로고
    • Equilibrium and response properties of the integrate-and-fire neuron in discrete time
    • doi:103389/neuro.10.029.2009
    • Helias M, Deger M, Diesmann M, Rotter S (2010) Equilibrium and response properties of the integrate-and-fire neuron in discrete time. Front Comput Neurosci 3: doi:10.3389/neuro.10.029.2009.
    • (2010) Front Comput Neurosci , vol.3
    • Helias, M.1    Deger, M.2    Diesmann, M.3    Rotter, S.4
  • 50
    • 0029835892 scopus 로고    scopus 로고
    • Chaos in neuronal networks with balanced excitatory and inhibitory activity
    • van Vreeswijk C, Sompolinsky H (1996) Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science 274: 1724-1726.
    • (1996) Science , vol.274 , pp. 1724-1726
    • van Vreeswijk, C.1    Sompolinsky, H.2
  • 53
    • 0020642933 scopus 로고
    • Relation between shapes of postsynaptic potentials and changes in firing probability of cat motoneurones
    • Fetz E, Gustafsson B (1983) Relation between shapes of postsynaptic potentials and changes in firing probability of cat motoneurones. J Physiol (Lond) 341: 387-410.
    • (1983) J Physiol (Lond) , vol.341 , pp. 387-410
    • Fetz, E.1    Gustafsson, B.2
  • 54
    • 0017486356 scopus 로고
    • Correlation analysis of stimulus-evoked changes in excitability of spontaneously firing neurons
    • Knox CK, Poppele RE (1977) Correlation analysis of stimulus-evoked changes in excitability of spontaneously firing neurons. J Neurophysiol 40: 616-625.
    • (1977) J Neurophysiol , vol.40 , pp. 616-625
    • Knox, C.K.1    Poppele, R.E.2
  • 56
    • 33751309853 scopus 로고    scopus 로고
    • Non-gaussian membrane potential dynamics imply sparse, synchronous activity in auditory cortex
    • DeWeese MR, Zador AM (2006) Non-gaussian membrane potential dynamics imply sparse, synchronous activity in auditory cortex. J Neurosci 26: 12206-12218.
    • (2006) J Neurosci , vol.26 , pp. 12206-12218
    • DeWeese, M.R.1    Zador, A.M.2
  • 57
    • 33749595018 scopus 로고    scopus 로고
    • Modeling single-neuron dynamics and computations: A balance of detail and abstraction
    • Herz AVM, Gollisch T, Machens CK, Jaeger D (2006) Modeling single-neuron dynamics and computations: A balance of detail and abstraction. Science 314: 80-84.
    • (2006) Science , vol.314 , pp. 80-84
    • Herz, A.V.M.1    Gollisch, T.2    Machens, C.K.3    Jaeger, D.4
  • 58
    • 0035053796 scopus 로고    scopus 로고
    • Impact of active dendrites and structural plasticity on the memory capacity of neural tissue
    • Poirazi P, Mel BW (2001) Impact of active dendrites and structural plasticity on the memory capacity of neural tissue. Neuron 29: 779-796.
    • (2001) Neuron , vol.29 , pp. 779-796
    • Poirazi, P.1    Mel, B.W.2
  • 60
    • 0032535029 scopus 로고    scopus 로고
    • Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type
    • Bi Gq, Poo Mm (1998) Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci 18: 10464-10472.
    • (1998) J Neurosci , vol.18 , pp. 10464-10472
    • Bi, G.Q.1    Poo, M.M.2
  • 62
    • 34249703480 scopus 로고    scopus 로고
    • Spike-timing dependent plasticity in balanced random networks
    • Morrison A, Aertsen A, Diesmann M (2007) Spike-timing dependent plasticity in balanced random networks. Neural Comput 19: 1437-1467.
    • (2007) Neural Comput , vol.19 , pp. 1437-1467
    • Morrison, A.1    Aertsen, A.2    Diesmann, M.3
  • 63
    • 0347694858 scopus 로고    scopus 로고
    • How spike generation mechanisms determine the neuronal response to fluctuating inputs
    • Fourcaud-Trocmé N, Hansel D, van Vreeswijk C, Brunel (2003) How spike generation mechanisms determine the neuronal response to fluctuating inputs. J Neurosci 23: 11628-11640.
    • (2003) J Neurosci , vol.23 , pp. 11628-11640
    • Fourcaud-Trocmé, N.1    Hansel, D.2    van Vreeswijk, C.3    Brunel4
  • 64
    • 18144427154 scopus 로고    scopus 로고
    • Action potential onset dynamics and the response speed of neuronal populations
    • Naundorf B, Geisel T, Wolf F (2005) Action potential onset dynamics and the response speed of neuronal populations. J Comput Neurosci 18: 297-309.
    • (2005) J Comput Neurosci , vol.18 , pp. 297-309
    • Naundorf, B.1    Geisel, T.2    Wolf, F.3
  • 65
    • 0037264955 scopus 로고    scopus 로고
    • Higher-order statistics of input ensembles and the response of simple model neurons
    • Kuhn A, Aertsen A, Rotter S (2003) Higher-order statistics of input ensembles and the response of simple model neurons. Neural Comput 15: 67-101.
    • (2003) Neural Comput , vol.15 , pp. 67-101
    • Kuhn, A.1    Aertsen, A.2    Rotter, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.