메뉴 건너뛰기




Volumn 24, Issue 2, 2011, Pages 182-189

Neural network modeling for advanced process control using production data

Author keywords

Neural networks; process modeling; sensitivity analysis; supervisory control

Indexed keywords

ADVANCED PROCESS CONTROL; AVERAGE PREDICTION ERROR; CRITICAL STEPS; EMPIRICAL PROCESS; FABRICATION PROCESS; INDUSTRIAL PROCESSS; MANUFACTURING PROCESS; MODEL-BASED; MULTIPLE INPUTS AND OUTPUTS; NEURAL NETWORK MODELING; NON-LINEAR; OUTPUT RESPONSE; PROCESS MODELING; PROCESS OPTIMIZATION; PRODUCTION DATA; SEQUENTIAL NEURAL NETWORKS; SUPERVISORY CONTROL; SUPERVISORY CONTROL SYSTEMS; UNIT PROCESS;

EID: 79955643848     PISSN: 08946507     EISSN: None     Source Type: Journal    
DOI: 10.1109/TSM.2011.2115261     Document Type: Conference Paper
Times cited : (18)

References (24)
  • 1
    • 14844354357 scopus 로고    scopus 로고
    • The training of neural networks to model manufacturing processes
    • DOI 10.1007/s10845-005-4823-7
    • W. Sukthomya and J. Tannock, "The training of neural networks to model manufacturing processes", J. Intell. Manuf., vol. 16, no. 1, pp. 39-51, 2005. (Pubitemid 40356754)
    • (2005) Journal of Intelligent Manufacturing , vol.16 , Issue.1 , pp. 39-51
    • Sukthomya, W.1    Tannock, J.2
  • 2
    • 0000243355 scopus 로고
    • Learning in artificial neural networks: A statistical perspective
    • H. White, "Learning in artificial neural networks: A statistical perspective", Neural Comput., vol. 1, no. 4, pp. 425-464, 1989.
    • (1989) Neural. Comput. , vol.1 , Issue.4 , pp. 425-464
    • White, H.1
  • 3
    • 0038341737 scopus 로고    scopus 로고
    • Optimizing the IC wire bonding process using a neural networks/genetic algorithms approach
    • C. T. suand T. L. Chiang, "Optimizing the IC wire bonding process using a neural networks/genetic algorithms approach", J. Intell. Manuf., vol. 14, no. 2, pp. 229-238, 2003
    • (2003) J. Intell. Manuf. , vol.14 , Issue.2 , pp. 229-238
    • Su, C.T.1    Chiang, T.L.2
  • 4
    • 0027693885 scopus 로고
    • Use of neural networks in modeling semiconductor manufacturing processes: An example for plasma etch modeling
    • Nov
    • E. A. Rietman and E. R. Lory, "Use of neural networks in modeling semiconductor manufacturing processes: An example for plasma etch modeling", IEEE Trans. Semicond. Manuf., vol. 6, no. 4, pp. 343-347, Nov. 1993.
    • (1993) IEEE Trans. Semicond. Manuf. , vol.6 , Issue.4 , pp. 343-347
    • Rietman, E.A.1    Lory, E.R.2
  • 5
    • 0033310510 scopus 로고    scopus 로고
    • Sequential modeling of via formation in photosensitive dielectric materials for MCM-D applications
    • DOI 10.1109/66.778202
    • T. S. Kim and G. S. May, "Sequential modeling of via formation in photosensitive dielectric materials for MCM-D applications", IEEE Trans. Semicond. Manuf., vol. 12, no. 3, pp. 345-352, Aug. 1999. (Pubitemid 30507666)
    • (1999) IEEE Transactions on Semiconductor Manufacturing , vol.12 , Issue.3 , pp. 345-352
    • Kim, T.S.1    May, G.S.2
  • 6
    • 0027592466 scopus 로고
    • Advantages of plasma etch modeling using neural networks over statistical techniques
    • May
    • C. D. Himmel and G. S. May, "Advantages of plasma etch modeling using neural networks over statistical techniques", IEEE Trans. Semicond. Manuf., vol. 6, no. 2, pp. 103-111, May 1993.
    • (1993) IEEE Trans. Semicond. Manuf. , vol.6 , Issue.2 , pp. 103-111
    • Himmel, C.D.1    May, G.S.2
  • 7
    • 0028507249 scopus 로고
    • Manufacturing ICs the neural way
    • Sep
    • G. S. May, "Manufacturing ICs the neural way", IEEE Spectr., vol. 31, no. 9, pp. 47-51, Sep. 1994.
    • (1994) IEEE Spectr. , vol.31 , Issue.9 , pp. 47-51
    • May, G.S.1
  • 9
    • 0028449475 scopus 로고
    • Modeling the properties of PECVD silicon dioxide films using optimized backpropagation neural networks
    • Jun
    • S. S. Han, M. Ceiler, S. A. Bidstrup, P. Kohl, and G. May, "Modeling the properties of PECVD silicon dioxide films using optimized backpropagation neural networks", IEEE Trans. Compon. Packag. Manuf. Technol., vol. 17, no. 2, pp. 174-182, Jun. 1994.
    • (1994) IEEE Trans. Compon. Packag. Manuf. Technol. , vol.17 , Issue.2 , pp. 174-182
    • Han, S.S.1    Ceiler, M.2    Bidstrup, S.A.3    Kohl, P.4    May, G.5
  • 10
    • 0029709228 scopus 로고    scopus 로고
    • Recipe synthesis for PECVD SiO2 films using neural networks and genetic algorithms
    • May
    • S. Han and G. S. May, "Recipe synthesis for PECVD SiO2 films using neural networks and genetic algorithms", in Proc. 46th Electron. Compon. Technol. Conf., May 1996, pp. 855-860.
    • (1996) Proc. 46th Electron. Compon. Technol. Conf. , pp. 855-860
    • Han, S.1    May, G.S.2
  • 13
    • 0030297904 scopus 로고    scopus 로고
    • Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes
    • DOI 10.1016/S0895-4356(96)00002-9, PII S0895435696000029
    • J. V. Tu, "Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes", J. Clin. Epidemiol., vol. 49, no. 11, pp. 1225-1231, Nov. 1996. (Pubitemid 26386228)
    • (1996) Journal of Clinical Epidemiology , vol.49 , Issue.11 , pp. 1225-1231
    • Tu, J.V.1
  • 14
    • 0342871690 scopus 로고    scopus 로고
    • Introduction to multi-layer feed-forward neural networks
    • DOI 10.1016/S0169-7439(97)00061-0, PII S0169743997000610
    • D. Svozil, V. Kvasnicka, and J. Pospichal, "Introduction to multilayer feed-forward neural networks", Chemometrics Intell. Lab. Syst., vol. 39, no. 1, pp. 43-62, Nov. 1997. (Pubitemid 27512840)
    • (1997) Chemometrics and Intelligent Laboratory Systems , vol.39 , Issue.1 , pp. 43-62
    • Svozil, D.1    Kvasnicka, V.2    Pospichal, J.3
  • 15
    • 0020118274 scopus 로고
    • Neural networks and physical systems with emergent collective computational abilities
    • Apr
    • J. J. Hopfield, "Neural networks and physical systems with emergent collective computational abilities", Proc. Natl. Acad. Sci. USA, vol. 79, pp. 2554-2558, Apr. 1982.
    • (1982) Proc. Natl. Acad. Sci. USA , vol.79 , pp. 2554-2558
    • Hopfield, J.J.1
  • 16
    • 22944449748 scopus 로고    scopus 로고
    • Unsupervised spatial pattern classification of electrical-wafer-sorting maps in semiconductor manufacturing
    • DOI 10.1016/j.patrec.2005.03.007, PII S0167865505000620
    • F. D. Palma, G. D. Nicolao, G. Miraglia, E. Pasquinetti, and F. Piccinini, "Unsupervised spatial pattern classification of electrical-wafer-sorting maps in semiconductor manufacturing", Pattern Recognit. Lett., vol. 26, no. 12, pp. 1857-1865, Sep. 2005. (Pubitemid 41049660)
    • (2005) Pattern Recognition Letters , vol.26 , Issue.12 , pp. 1857-1865
    • Di Palma, F.1    De Nicolao, G.2    Miraglia, G.3    Pasquinetti, E.4    Piccinini, F.5
  • 17
    • 0036565004 scopus 로고    scopus 로고
    • A neural-network approach for semiconductor wafer post-sawing inspection
    • DOI 10.1109/66.999602, PII S0894650702044573
    • C. T. Su, T. Yang, and C. M. Ke, "A neural-network approach for semiconductor wafer post-sawing inspection", IEEE Trans. Semicond. Manuf., vol. 15, no. 2, pp. 260-266, May 2002. (Pubitemid 34669740)
    • (2002) IEEE Transactions on Semiconductor Manufacturing , vol.15 , Issue.2 , pp. 260-266
    • Su, C.-T.1    Yang, T.2    Ke, C.-M.3
  • 18
    • 2042515742 scopus 로고    scopus 로고
    • Neural networks in business: A survey of applications (1992-1998)
    • PII S0957417499000160
    • A. Vellido, P. J. G. Lisboa, and J. Vaughan, "Neural networks in business: A survey of applications (1992-1998)", Expert Syst. Applicat., vol. 17, no. 1, pp. 51-70, Jul. 1999. (Pubitemid 129664853)
    • (1999) Expert Systems with Applications , vol.17 , Issue.1 , pp. 51-70
    • Vellido, A.1    Lisboa, P.J.G.2    Vaughan, J.3
  • 19
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • DOI 10.1016/0893-6080(89)90020-8
    • K. Hornik, M. Stinchcombe, and H. White, "Multilayer feedforward networks are universal approximators", Neural Netw., vol. 2, no. 5, pp. 359-366, 1989. (Pubitemid 20609008)
    • (1989) Neural Networks , vol.2 , Issue.5 , pp. 359-366
    • Hornik Kurt1    Stinchcombe Maxwell2    White Halbert3
  • 20
    • 0027662338 scopus 로고
    • Pruning algorithms: A survey
    • Sep
    • R. Reed, "Pruning algorithms: A survey", IEEE Trans. Neural Netw., vol. 4, no. 5, pp. 740-747, Sep. 1993.
    • (1993) IEEE Trans. Neural. Netw. , vol.4 , Issue.5 , pp. 740-747
    • Reed, R.1
  • 21
    • 38949126980 scopus 로고    scopus 로고
    • What are artificial neural networks?
    • DOI 10.1038/nbt1386, PII NBT1386
    • A. Krogh, "What are artificial neural networks", Nature Biotechnol., vol. 26, no. 2, pp. 195-197, Feb. 2008. (Pubitemid 351225959)
    • (2008) Nature Biotechnology , vol.26 , Issue.2 , pp. 195-197
    • Krogh, A.1
  • 22
    • 0022471098 scopus 로고
    • Learning representation by back-propagating errors
    • Oct
    • D. E. Rumelhart, G. E. Hinton, and R. J. Williams, "Learning representation by back-propagating errors", Nature, vol. 323, pp. 533-536, Oct. 1986.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 23
    • 84997479670 scopus 로고
    • Managerial applications of neural networks: The case of bank failure predictions
    • Jul
    • K. Y. Tam and M. Y. Kiang, "Managerial applications of neural networks: The case of bank failure predictions", Manage. Sci., vol. 38, no. 7, pp. 926-947, Jul. 1992.
    • (1992) Manage. Sci. , vol.38 , Issue.7 , pp. 926-947
    • Tam, K.Y.1    Kiang, M.Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.