-
1
-
-
14844354357
-
The training of neural networks to model manufacturing processes
-
DOI 10.1007/s10845-005-4823-7
-
W. Sukthomya and J. Tannock, "The training of neural networks to model manufacturing processes", J. Intell. Manuf., vol. 16, no. 1, pp. 39-51, 2005. (Pubitemid 40356754)
-
(2005)
Journal of Intelligent Manufacturing
, vol.16
, Issue.1
, pp. 39-51
-
-
Sukthomya, W.1
Tannock, J.2
-
2
-
-
0000243355
-
Learning in artificial neural networks: A statistical perspective
-
H. White, "Learning in artificial neural networks: A statistical perspective", Neural Comput., vol. 1, no. 4, pp. 425-464, 1989.
-
(1989)
Neural. Comput.
, vol.1
, Issue.4
, pp. 425-464
-
-
White, H.1
-
3
-
-
0038341737
-
Optimizing the IC wire bonding process using a neural networks/genetic algorithms approach
-
C. T. suand T. L. Chiang, "Optimizing the IC wire bonding process using a neural networks/genetic algorithms approach", J. Intell. Manuf., vol. 14, no. 2, pp. 229-238, 2003
-
(2003)
J. Intell. Manuf.
, vol.14
, Issue.2
, pp. 229-238
-
-
Su, C.T.1
Chiang, T.L.2
-
4
-
-
0027693885
-
Use of neural networks in modeling semiconductor manufacturing processes: An example for plasma etch modeling
-
Nov
-
E. A. Rietman and E. R. Lory, "Use of neural networks in modeling semiconductor manufacturing processes: An example for plasma etch modeling", IEEE Trans. Semicond. Manuf., vol. 6, no. 4, pp. 343-347, Nov. 1993.
-
(1993)
IEEE Trans. Semicond. Manuf.
, vol.6
, Issue.4
, pp. 343-347
-
-
Rietman, E.A.1
Lory, E.R.2
-
5
-
-
0033310510
-
Sequential modeling of via formation in photosensitive dielectric materials for MCM-D applications
-
DOI 10.1109/66.778202
-
T. S. Kim and G. S. May, "Sequential modeling of via formation in photosensitive dielectric materials for MCM-D applications", IEEE Trans. Semicond. Manuf., vol. 12, no. 3, pp. 345-352, Aug. 1999. (Pubitemid 30507666)
-
(1999)
IEEE Transactions on Semiconductor Manufacturing
, vol.12
, Issue.3
, pp. 345-352
-
-
Kim, T.S.1
May, G.S.2
-
6
-
-
0027592466
-
Advantages of plasma etch modeling using neural networks over statistical techniques
-
May
-
C. D. Himmel and G. S. May, "Advantages of plasma etch modeling using neural networks over statistical techniques", IEEE Trans. Semicond. Manuf., vol. 6, no. 2, pp. 103-111, May 1993.
-
(1993)
IEEE Trans. Semicond. Manuf.
, vol.6
, Issue.2
, pp. 103-111
-
-
Himmel, C.D.1
May, G.S.2
-
7
-
-
0028507249
-
Manufacturing ICs the neural way
-
Sep
-
G. S. May, "Manufacturing ICs the neural way", IEEE Spectr., vol. 31, no. 9, pp. 47-51, Sep. 1994.
-
(1994)
IEEE Spectr.
, vol.31
, Issue.9
, pp. 47-51
-
-
May, G.S.1
-
9
-
-
0028449475
-
Modeling the properties of PECVD silicon dioxide films using optimized backpropagation neural networks
-
Jun
-
S. S. Han, M. Ceiler, S. A. Bidstrup, P. Kohl, and G. May, "Modeling the properties of PECVD silicon dioxide films using optimized backpropagation neural networks", IEEE Trans. Compon. Packag. Manuf. Technol., vol. 17, no. 2, pp. 174-182, Jun. 1994.
-
(1994)
IEEE Trans. Compon. Packag. Manuf. Technol.
, vol.17
, Issue.2
, pp. 174-182
-
-
Han, S.S.1
Ceiler, M.2
Bidstrup, S.A.3
Kohl, P.4
May, G.5
-
10
-
-
0029709228
-
Recipe synthesis for PECVD SiO2 films using neural networks and genetic algorithms
-
May
-
S. Han and G. S. May, "Recipe synthesis for PECVD SiO2 films using neural networks and genetic algorithms", in Proc. 46th Electron. Compon. Technol. Conf., May 1996, pp. 855-860.
-
(1996)
Proc. 46th Electron. Compon. Technol. Conf.
, pp. 855-860
-
-
Han, S.1
May, G.S.2
-
13
-
-
0030297904
-
Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes
-
DOI 10.1016/S0895-4356(96)00002-9, PII S0895435696000029
-
J. V. Tu, "Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes", J. Clin. Epidemiol., vol. 49, no. 11, pp. 1225-1231, Nov. 1996. (Pubitemid 26386228)
-
(1996)
Journal of Clinical Epidemiology
, vol.49
, Issue.11
, pp. 1225-1231
-
-
Tu, J.V.1
-
14
-
-
0342871690
-
Introduction to multi-layer feed-forward neural networks
-
DOI 10.1016/S0169-7439(97)00061-0, PII S0169743997000610
-
D. Svozil, V. Kvasnicka, and J. Pospichal, "Introduction to multilayer feed-forward neural networks", Chemometrics Intell. Lab. Syst., vol. 39, no. 1, pp. 43-62, Nov. 1997. (Pubitemid 27512840)
-
(1997)
Chemometrics and Intelligent Laboratory Systems
, vol.39
, Issue.1
, pp. 43-62
-
-
Svozil, D.1
Kvasnicka, V.2
Pospichal, J.3
-
15
-
-
0020118274
-
Neural networks and physical systems with emergent collective computational abilities
-
Apr
-
J. J. Hopfield, "Neural networks and physical systems with emergent collective computational abilities", Proc. Natl. Acad. Sci. USA, vol. 79, pp. 2554-2558, Apr. 1982.
-
(1982)
Proc. Natl. Acad. Sci. USA
, vol.79
, pp. 2554-2558
-
-
Hopfield, J.J.1
-
16
-
-
22944449748
-
Unsupervised spatial pattern classification of electrical-wafer-sorting maps in semiconductor manufacturing
-
DOI 10.1016/j.patrec.2005.03.007, PII S0167865505000620
-
F. D. Palma, G. D. Nicolao, G. Miraglia, E. Pasquinetti, and F. Piccinini, "Unsupervised spatial pattern classification of electrical-wafer-sorting maps in semiconductor manufacturing", Pattern Recognit. Lett., vol. 26, no. 12, pp. 1857-1865, Sep. 2005. (Pubitemid 41049660)
-
(2005)
Pattern Recognition Letters
, vol.26
, Issue.12
, pp. 1857-1865
-
-
Di Palma, F.1
De Nicolao, G.2
Miraglia, G.3
Pasquinetti, E.4
Piccinini, F.5
-
17
-
-
0036565004
-
A neural-network approach for semiconductor wafer post-sawing inspection
-
DOI 10.1109/66.999602, PII S0894650702044573
-
C. T. Su, T. Yang, and C. M. Ke, "A neural-network approach for semiconductor wafer post-sawing inspection", IEEE Trans. Semicond. Manuf., vol. 15, no. 2, pp. 260-266, May 2002. (Pubitemid 34669740)
-
(2002)
IEEE Transactions on Semiconductor Manufacturing
, vol.15
, Issue.2
, pp. 260-266
-
-
Su, C.-T.1
Yang, T.2
Ke, C.-M.3
-
18
-
-
2042515742
-
Neural networks in business: A survey of applications (1992-1998)
-
PII S0957417499000160
-
A. Vellido, P. J. G. Lisboa, and J. Vaughan, "Neural networks in business: A survey of applications (1992-1998)", Expert Syst. Applicat., vol. 17, no. 1, pp. 51-70, Jul. 1999. (Pubitemid 129664853)
-
(1999)
Expert Systems with Applications
, vol.17
, Issue.1
, pp. 51-70
-
-
Vellido, A.1
Lisboa, P.J.G.2
Vaughan, J.3
-
19
-
-
0024880831
-
Multilayer feedforward networks are universal approximators
-
DOI 10.1016/0893-6080(89)90020-8
-
K. Hornik, M. Stinchcombe, and H. White, "Multilayer feedforward networks are universal approximators", Neural Netw., vol. 2, no. 5, pp. 359-366, 1989. (Pubitemid 20609008)
-
(1989)
Neural Networks
, vol.2
, Issue.5
, pp. 359-366
-
-
Hornik Kurt1
Stinchcombe Maxwell2
White Halbert3
-
20
-
-
0027662338
-
Pruning algorithms: A survey
-
Sep
-
R. Reed, "Pruning algorithms: A survey", IEEE Trans. Neural Netw., vol. 4, no. 5, pp. 740-747, Sep. 1993.
-
(1993)
IEEE Trans. Neural. Netw.
, vol.4
, Issue.5
, pp. 740-747
-
-
Reed, R.1
-
21
-
-
38949126980
-
What are artificial neural networks?
-
DOI 10.1038/nbt1386, PII NBT1386
-
A. Krogh, "What are artificial neural networks", Nature Biotechnol., vol. 26, no. 2, pp. 195-197, Feb. 2008. (Pubitemid 351225959)
-
(2008)
Nature Biotechnology
, vol.26
, Issue.2
, pp. 195-197
-
-
Krogh, A.1
-
22
-
-
0022471098
-
Learning representation by back-propagating errors
-
Oct
-
D. E. Rumelhart, G. E. Hinton, and R. J. Williams, "Learning representation by back-propagating errors", Nature, vol. 323, pp. 533-536, Oct. 1986.
-
(1986)
Nature
, vol.323
, pp. 533-536
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
23
-
-
84997479670
-
Managerial applications of neural networks: The case of bank failure predictions
-
Jul
-
K. Y. Tam and M. Y. Kiang, "Managerial applications of neural networks: The case of bank failure predictions", Manage. Sci., vol. 38, no. 7, pp. 926-947, Jul. 1992.
-
(1992)
Manage. Sci.
, vol.38
, Issue.7
, pp. 926-947
-
-
Tam, K.Y.1
Kiang, M.Y.2
|