메뉴 건너뛰기




Volumn 178, Issue 3, 2008, Pages 714-731

A discretization algorithm based on Class-Attribute Contingency Coefficient

Author keywords

Classification; Contingency coefficient; Data mining; Decision tree; Discretization

Indexed keywords

DATA MINING; DATA STRUCTURES; DECISION TREES; LEARNING SYSTEMS;

EID: 35748943218     PISSN: 00200255     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ins.2007.09.004     Document Type: Article
Times cited : (195)

References (38)
  • 1
    • 35748976995 scopus 로고    scopus 로고
    • C.L. Blake, C.J. Merz, UCI repository of machine learning databases, University of California, Department of Information and Computer Science, Irvine, CA, 1998. Available from: .
  • 2
    • 2342626638 scopus 로고    scopus 로고
    • Khiops: a statistical discretization method of continuous attributes
    • Boulle M. Khiops: a statistical discretization method of continuous attributes. Machine Learning 55 1 (2004) 53-69
    • (2004) Machine Learning , vol.55 , Issue.1 , pp. 53-69
    • Boulle, M.1
  • 3
    • 34547786546 scopus 로고    scopus 로고
    • Newspaper demand prediction and replacement model based on fuzzy clustering and rules
    • Cardoso G., and Gomide F. Newspaper demand prediction and replacement model based on fuzzy clustering and rules. Information Sciences 177 21 (2007) 4799-4809
    • (2007) Information Sciences , vol.177 , Issue.21 , pp. 4799-4809
    • Cardoso, G.1    Gomide, F.2
  • 5
    • 0242360562 scopus 로고
    • Information discovery through hierarchical maximum entropy discretization and synthesis
    • Piatetsky-Shapiro G., and Frawley W.J. (Eds), AAAI Press
    • Chiu D., Wong A., and Cheung B. Information discovery through hierarchical maximum entropy discretization and synthesis. In: Piatetsky-Shapiro G., and Frawley W.J. (Eds). Knowledge Discovery in Databases (1991), AAAI Press 125-140
    • (1991) Knowledge Discovery in Databases , pp. 125-140
    • Chiu, D.1    Wong, A.2    Cheung, B.3
  • 6
    • 0010594108 scopus 로고    scopus 로고
    • Hybrid inductive machine learning: an overview of clip algorithms
    • Jain L.C., and Kacprzyk J. (Eds), Physica-Verlag (Springer)
    • Cios K.J., and Kurgan L.A. Hybrid inductive machine learning: an overview of clip algorithms. In: Jain L.C., and Kacprzyk J. (Eds). New Learning Paradigms in Soft Computing (2001), Physica-Verlag (Springer) 276-322
    • (2001) New Learning Paradigms in Soft Computing , pp. 276-322
    • Cios, K.J.1    Kurgan, L.A.2
  • 7
    • 2442649388 scopus 로고    scopus 로고
    • CLIP4: hybrid inductive machine learning algorithm that generates inequality rules
    • Cios K.J., and Kurgan L.A. CLIP4: hybrid inductive machine learning algorithm that generates inequality rules. Information Science 163 1-3 (2004) 37-83
    • (2004) Information Science , vol.163 , Issue.1-3 , pp. 37-83
    • Cios, K.J.1    Kurgan, L.A.2
  • 8
    • 34249966007 scopus 로고
    • The CN2 algorithm
    • Clark P., and Niblett T. The CN2 algorithm. Machine Learning 3 4 (1989) 261-283
    • (1989) Machine Learning , vol.3 , Issue.4 , pp. 261-283
    • Clark, P.1    Niblett, T.2
  • 9
    • 34250314887 scopus 로고    scopus 로고
    • Decision-tree instance-space decomposition with grouped gain-ratio
    • Cohen S., Rokach L., and Maimon O. Decision-tree instance-space decomposition with grouped gain-ratio. Information Sciences 177 17 (2007) 3592-3612
    • (2007) Information Sciences , vol.177 , Issue.17 , pp. 3592-3612
    • Cohen, S.1    Rokach, L.2    Maimon, O.3
  • 10
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Demsar J. Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research 7 (2006) 1-30
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demsar, J.1
  • 11
    • 35748955979 scopus 로고    scopus 로고
    • J. Dougherty, R. Kohavi, M. Sahami, Supervised and unsupervised discretization of continuous features, in: Proceeding of Twelfth International Conference on Machine Learning, 1995, pp. 194-202.
  • 12
    • 0003024008 scopus 로고
    • On the handling of continuous-valued attributes in decision tree generation
    • Fayyad U.M., and Irani K.B. On the handling of continuous-valued attributes in decision tree generation. Machine Learning 8 (1992) 87-102
    • (1992) Machine Learning , vol.8 , pp. 87-102
    • Fayyad, U.M.1    Irani, K.B.2
  • 13
    • 35748972200 scopus 로고    scopus 로고
    • U.M. Fayyad, K.B. Irani, Multi-interval discretization of continuous-valued attributes for classification learning, in: Proceeding of Thirteenth International Conference on Artificial Intelligence, 1993, pp. 1022-1027.
  • 14
    • 4243149406 scopus 로고    scopus 로고
    • Building multi-way decision trees with numerical attributes
    • Berzal F., Cubero J.C., Mari{dotless}́n N., and Sánchez D. Building multi-way decision trees with numerical attributes. Information Sciences 165 1-2 (2004) 73-90
    • (2004) Information Sciences , vol.165 , Issue.1-2 , pp. 73-90
    • Berzal, F.1    Cubero, J.C.2    Marín, N.3    Sánchez, D.4
  • 15
    • 33748764680 scopus 로고    scopus 로고
    • A coloring fuzzy graph approach for image classification
    • Gómez D., Montero J., and Yáñez J. A coloring fuzzy graph approach for image classification. Information Sciences 176 24 (2006) 3645-3657
    • (2006) Information Sciences , vol.176 , Issue.24 , pp. 3645-3657
    • Gómez, D.1    Montero, J.2    Yáñez, J.3
  • 17
    • 9544247730 scopus 로고    scopus 로고
    • Estimating sentence types in computer related new product bulletins using a decision tree
    • Hidekazu T., Sayed A.E., Masao F., Kazuhiro M., Kazuhiko T., and Aoe J.I. Estimating sentence types in computer related new product bulletins using a decision tree. Information Sciences 168 1-4 (2004) 185-200
    • (2004) Information Sciences , vol.168 , Issue.1-4 , pp. 185-200
    • Hidekazu, T.1    Sayed, A.E.2    Masao, F.3    Kazuhiro, M.4    Kazuhiko, T.5    Aoe, J.I.6
  • 18
    • 35748953599 scopus 로고    scopus 로고
    • K.A. Kaufman, R.S. Michalski, Learning from inconsistent and noisy data: the AQ18 approach, in: Proceeding of Eleventh International Symposium on Methodologies for Intelligent Systems, 1999.
  • 19
    • 0026995495 scopus 로고    scopus 로고
    • R. Kerber, ChiMerge: discretization of numeric attributes, in: Proceeding of Ninth International Conference on Artificial Intelligence, 1992, pp. 123-128.
  • 20
    • 35748959213 scopus 로고    scopus 로고
    • L. Kurgan, K.J. Cios, Fast Class-Attribute Interdependence Maximization (CAIM) Discretization Algorithm, in: Proceeding of International Conference on Machine Learning and Applications, 2003, pp. 30-36.
  • 22
    • 44049083520 scopus 로고    scopus 로고
    • C.I. Lee, C.J. Tsai, Y.R. Yang, W.P. Yang, A top-down and greedy method for discretization of continuous attributes, in: Proceedings of Fourth International Conference on Fuzzy Systems and Knowledge Discovery, Haikou, China, 2007.
  • 25
    • 19544366755 scopus 로고    scopus 로고
    • S. Mehta; S. Parthasarathy, H. Yang, Correlation preserving discretization data mining, in: Proceeding of Fourth IEEE International Conference on Data Mining, 2004, pp. 479-482.
  • 26
    • 35748962154 scopus 로고    scopus 로고
    • R.S. Michalski, I. Mozetic, J. Hong, N. Lavrac, The multipurpose incremental learning system AQ15 and its testing application to three medical domains, in: Proceeding of Fifth National Conference on Artificial Intelligence, 1986, pp. 1041-1045.
  • 27
    • 35748946785 scopus 로고    scopus 로고
    • A. Paterson, T.B. Niblett, ACLS manual, Edinburgh: Intelligent Terminals, Ltd., 1987.
  • 28
    • 35748961569 scopus 로고    scopus 로고
    • B. Pfahringer, Compression-based discretization of continuous attributes, in: Proceeding of Twelfth International Conference on Machine Learning, 1995, pp. 456-463.
  • 29
    • 35748948228 scopus 로고    scopus 로고
    • R. Quinlan, Data Mining Tools, 2005. .
  • 30
    • 35748957932 scopus 로고    scopus 로고
    • R. Rastogi, K. Shim, PUBLIC: a decision tree classifier that integrates building and pruning, in: Proceedings of the 24th International Conference on Very Large Databases, 1998, pp. 404-415.
  • 31
    • 18144374544 scopus 로고    scopus 로고
    • Classification methods in the detection of new malicious emails
    • Shih D.H., Chiang H.S., and Yen C.D. Classification methods in the detection of new malicious emails. Information Sciences 172 1-2 (2005) 241-261
    • (2005) Information Sciences , vol.172 , Issue.1-2 , pp. 241-261
    • Shih, D.H.1    Chiang, H.S.2    Yen, C.D.3
  • 32
    • 34447512731 scopus 로고    scopus 로고
    • A self-adaptive migration model genetic algorithm for data mining applications
    • Srinivasa K.G., Venugopal K.R., and Patnaik L.M. A self-adaptive migration model genetic algorithm for data mining applications. Information Sciences 177 20 (2007) 4295-4313
    • (2007) Information Sciences , vol.177 , Issue.20 , pp. 4295-4313
    • Srinivasa, K.G.1    Venugopal, K.R.2    Patnaik, L.M.3
  • 33
    • 14644422200 scopus 로고    scopus 로고
    • An extended chi2 algorithm for discretization of real value attributes
    • Su C.T., and Hsu J.H. An extended chi2 algorithm for discretization of real value attributes. IEEE Transactions on Knowledge and Data Engineering 17 3 (2005) 437-441
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , Issue.3 , pp. 437-441
    • Su, C.T.1    Hsu, J.H.2
  • 36
    • 33750568786 scopus 로고    scopus 로고
    • Q. Wu, D.A. Bell, T.M. McGinnity, G. Prasad, G. Qi, X. Huang, Improvement of decision accuracy using discretization of continuous attributes, in: Proceedings of the Third International Conference on Fuzzy Systems and Knowledge Discovery, Lecture Notes in Computer Science 4223, 2006, pp. 674-683.
  • 37
    • 27944494029 scopus 로고    scopus 로고
    • An extension of the naive Bayesian classifier
    • Yager R.R. An extension of the naive Bayesian classifier. Information Sciences 176 5 (2006) 577-588
    • (2006) Information Sciences , vol.176 , Issue.5 , pp. 577-588
    • Yager, R.R.1
  • 38
    • 27844605931 scopus 로고    scopus 로고
    • Computing with words for text processing: an approach to the text categorization
    • Zadrożny S., and Kacprzyk J. Computing with words for text processing: an approach to the text categorization. Information Sciences 176 4 (2006) 415-437
    • (2006) Information Sciences , vol.176 , Issue.4 , pp. 415-437
    • Zadrozny, S.1    Kacprzyk, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.