메뉴 건너뛰기




Volumn 222, Issue 10, 2011, Pages 1657-1665

Determining factors that influence the dispersal of a pelagic species: A comparison between artificial neural networks and evolutionary algorithms

Author keywords

Artificial neural networks; Ecological informatics; Evolutionary algorithms; Feature selection; Physalia

Indexed keywords

ARTIFICIAL NEURAL NETWORK; ARTIFICIAL NEURAL NETWORKS; BAYESIAN CLASSIFIER; CNIDARIA; COASTAL REGIONS; COASTAL WATERS; DYNAMIC SYSTEMS; EAST COAST; ERADICATION PROGRAMS; FEATURE SELECTION; INDEPENDENT SYSTEMS; INFORMATICS; INVASIVE SPECIES; MODELLING METHOD; MOLECULAR DATA; MULTI LAYER PERCEPTRON; NEW ZEALAND; OCEANOGRAPHIC DATA; PELAGIC SPECIES; PHYSALIA; SUMMER SEASON; WAVE HEIGHTS; WIND DIRECTIONS;

EID: 79954615468     PISSN: 03043800     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ecolmodel.2011.03.002     Document Type: Article
Times cited : (8)

References (66)
  • 1
    • 33845633261 scopus 로고    scopus 로고
    • Ensemble forecasting of species distributions
    • Araujo M.B., New M. Ensemble forecasting of species distributions. Trends in Ecology & Evolution 2007, 22:42-47.
    • (2007) Trends in Ecology & Evolution , vol.22 , pp. 42-47
    • Araujo, M.B.1    New, M.2
  • 4
    • 10644295753 scopus 로고    scopus 로고
    • Input determination for neural network models in water resources applications. Part 1. Background and methodology
    • Bowden G.J., Dandy G.C., Maier H.R. Input determination for neural network models in water resources applications. Part 1. Background and methodology. Journal of Hydrology 2005, 301:75-92.
    • (2005) Journal of Hydrology , vol.301 , pp. 75-92
    • Bowden, G.J.1    Dandy, G.C.2    Maier, H.R.3
  • 7
    • 0033578382 scopus 로고    scopus 로고
    • The use of artificial neural network to assess fish abundance and spatial occupancy in the littoral zone of a mesotrophic lake
    • Brosse S., Guegan J.-F., Tourenq J.-N., Lek S. The use of artificial neural network to assess fish abundance and spatial occupancy in the littoral zone of a mesotrophic lake. Ecological Modelling 1999, 120:299-311.
    • (1999) Ecological Modelling , vol.120 , pp. 299-311
    • Brosse, S.1    Guegan, J.-F.2    Tourenq, J.-N.3    Lek, S.4
  • 9
    • 45849098303 scopus 로고    scopus 로고
    • Information granulation based data mining approach for classifying imbalanced data
    • Chen M.C., Chen L.S., Hsu C.C., Zeng W.R. Information granulation based data mining approach for classifying imbalanced data. Information Science 2008, 178:3214-3227.
    • (2008) Information Science , vol.178 , pp. 3214-3227
    • Chen, M.C.1    Chen, L.S.2    Hsu, C.C.3    Zeng, W.R.4
  • 11
    • 0036090367 scopus 로고    scopus 로고
    • Phylogeny of Medusozoa and the evolution of cnidarian life cycles
    • Collins A.G. Phylogeny of Medusozoa and the evolution of cnidarian life cycles. Journal of Evolutionary Biology 2002, 15:418-432.
    • (2002) Journal of Evolutionary Biology , vol.15 , pp. 418-432
    • Collins, A.G.1
  • 12
  • 14
    • 31544454438 scopus 로고    scopus 로고
    • Scaling of connectivity in marine populations
    • Cowen R.K., Paris C.B., Srinivasan A. Scaling of connectivity in marine populations. Science 2006, 311:522-527.
    • (2006) Science , vol.311 , pp. 522-527
    • Cowen, R.K.1    Paris, C.B.2    Srinivasan, A.3
  • 15
    • 0035109318 scopus 로고    scopus 로고
    • Molecular evidence for cryptic species of Aurelia aurita (Cnidaria, Scyphozoa)
    • Dawson M.N., Jacobs D.K. Molecular evidence for cryptic species of Aurelia aurita (Cnidaria, Scyphozoa). Biological Bulletin 2001, 200:92-96.
    • (2001) Biological Bulletin , vol.200 , pp. 92-96
    • Dawson, M.N.1    Jacobs, D.K.2
  • 19
    • 0031269184 scopus 로고    scopus 로고
    • On the optimality of the simple Bayesian classifier under zero-one loss
    • Domingos P., Pazzani M. On the optimality of the simple Bayesian classifier under zero-one loss. Machine Learning 1997, 29:103-130.
    • (1997) Machine Learning , vol.29 , pp. 103-130
    • Domingos, P.1    Pazzani, M.2
  • 22
    • 0012320945 scopus 로고    scopus 로고
    • Statistical Evaluation of Neural Network Experiments, Minimum Requirements and Current Practice
    • Austrian Society for Cybernetic Studies, R. Trappl (Ed.)
    • Flexer A. Statistical Evaluation of Neural Network Experiments, Minimum Requirements and Current Practice. Cybernetics and Systems '96, Proceedings of the 13th European Meeting on Cybernetics and Systems Research 1996, 1005-1008. Austrian Society for Cybernetic Studies. R. Trappl (Ed.).
    • (1996) Cybernetics and Systems '96, Proceedings of the 13th European Meeting on Cybernetics and Systems Research , pp. 1005-1008
    • Flexer, A.1
  • 23
    • 45949096079 scopus 로고    scopus 로고
    • Computational intelligence approaches for pattern discovery in biological systems
    • Fogel G.B. Computational intelligence approaches for pattern discovery in biological systems. Briefings in Bioinformatics 2008, 9:307-316.
    • (2008) Briefings in Bioinformatics , vol.9 , pp. 307-316
    • Fogel, G.B.1
  • 27
    • 2442617141 scopus 로고    scopus 로고
    • Quantum-inspired evolutionary algorithms with a new termination criterion. He{open} gate, and two phase scheme
    • Han K.H., Kim J.H. Quantum-inspired evolutionary algorithms with a new termination criterion. He{open} gate, and two phase scheme. IEEE Transactions on Evolutionary Computation 2004, 8:156-169.
    • (2004) IEEE Transactions on Evolutionary Computation , vol.8 , pp. 156-169
    • Han, K.H.1    Kim, J.H.2
  • 29
    • 3542994517 scopus 로고    scopus 로고
    • Predictive modelling and spatial mapping of freshwater fish and decapod assemblages using GIS and neural networks
    • Joy M.K., Death R.G. Predictive modelling and spatial mapping of freshwater fish and decapod assemblages using GIS and neural networks. Freshwater Biology 2004, 49:1036-1052.
    • (2004) Freshwater Biology , vol.49 , pp. 1036-1052
    • Joy, M.K.1    Death, R.G.2
  • 30
    • 0141512143 scopus 로고    scopus 로고
    • Propagule dispersal in marine and terrestrial environments: a community perspective
    • Kinlan B.P., Gaines S.D. Propagule dispersal in marine and terrestrial environments: a community perspective. Ecology 2003, 84:2007-2020.
    • (2003) Ecology , vol.84 , pp. 2007-2020
    • Kinlan, B.P.1    Gaines, S.D.2
  • 31
    • 0034652521 scopus 로고    scopus 로고
    • Molecular genetic analyses of species boundaries in the sea
    • Knowlton N. Molecular genetic analyses of species boundaries in the sea. Hydrobiologia 2000, 420:73-90.
    • (2000) Hydrobiologia , vol.420 , pp. 73-90
    • Knowlton, N.1
  • 33
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Kohavi R., John G.H. Wrappers for feature subset selection. Artificial Intelligence 1997, 97:273-324.
    • (1997) Artificial Intelligence , vol.97 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 34
    • 36749047332 scopus 로고    scopus 로고
    • Supervised machine learning. A review of classification techniques
    • Kotsiantis S.B. Supervised machine learning. A review of classification techniques. Informatica 2007, 31:249-268.
    • (2007) Informatica , vol.31 , pp. 249-268
    • Kotsiantis, S.B.1
  • 36
    • 0005725471 scopus 로고
    • The Portuguese Man-of-War
    • Lane C.E. The Portuguese Man-of-War. Scientific America 1960, 2002:158-168.
    • (1960) Scientific America , vol.2002 , pp. 158-168
    • Lane, C.E.1
  • 39
    • 33747871616 scopus 로고    scopus 로고
    • Recent progress in understanding larval dispersal, new directions and digressions
    • Levin L.A. Recent progress in understanding larval dispersal, new directions and digressions. Integrative and Comparative Biology 2006, 46:282-297.
    • (2006) Integrative and Comparative Biology , vol.46 , pp. 282-297
    • Levin, L.A.1
  • 40
    • 36549024482 scopus 로고    scopus 로고
    • A weighted rough set based method developed for class imbalance learning
    • Liu J., Hu Q., Yu D. A weighted rough set based method developed for class imbalance learning. Information Sciences 2008, 178:1235-1256.
    • (2008) Information Sciences , vol.178 , pp. 1235-1256
    • Liu, J.1    Hu, Q.2    Yu, D.3
  • 41
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications
    • Maier H.R., Dandy G.C. Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environmental Modelling and Software 2000, 15:101-124.
    • (2000) Environmental Modelling and Software , vol.15 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 42
    • 73649089322 scopus 로고    scopus 로고
    • Behavior of the giant jellyfish Nemopilema nomurai in the East China Sea and East/Japan Sea during the summer of 2005. A numerical model approach using a particle-tracking experiment
    • Moon J.H., Pang I.C., Yang J.Y., Yoon W.D. Behavior of the giant jellyfish Nemopilema nomurai in the East China Sea and East/Japan Sea during the summer of 2005. A numerical model approach using a particle-tracking experiment. Journal of Marine Systems 2010, 80:101-114.
    • (2010) Journal of Marine Systems , vol.80 , pp. 101-114
    • Moon, J.H.1    Pang, I.C.2    Yang, J.Y.3    Yoon, W.D.4
  • 43
    • 0002431740 scopus 로고    scopus 로고
    • Automatic construction of decision trees from data. A multi-disciplinary survey
    • Murthy S.K. Automatic construction of decision trees from data. A multi-disciplinary survey. Data Mining and Knowledge Discovery 1998, 2:345-389.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , pp. 345-389
    • Murthy, S.K.1
  • 44
    • 1242322054 scopus 로고    scopus 로고
    • Integrating imaging spectroscopy and neural networks to map grass quality in the Kruger National Park, South Africa
    • Mutanga O., Skidmore A.K. Integrating imaging spectroscopy and neural networks to map grass quality in the Kruger National Park, South Africa. Remote Sensing of Environment 2004, 90:104-115.
    • (2004) Remote Sensing of Environment , vol.90 , pp. 104-115
    • Mutanga, O.1    Skidmore, A.K.2
  • 45
    • 27744586803 scopus 로고    scopus 로고
    • Genetic programming for analysis and real-time prediction of coastal algal blooms
    • Muttil N., Lee J.H.W. Genetic programming for analysis and real-time prediction of coastal algal blooms. Ecological Modelling 2005, 189:363-376.
    • (2005) Ecological Modelling , vol.189 , pp. 363-376
    • Muttil, N.1    Lee, J.H.W.2
  • 46
    • 34250774983 scopus 로고    scopus 로고
    • Machine-learning paradigms for selecting ecologically significant input variables
    • Muttil N., Chau K.W. Machine-learning paradigms for selecting ecologically significant input variables. Engineering Applications of Artificial Intelligence 2007, 20:735-744.
    • (2007) Engineering Applications of Artificial Intelligence , vol.20 , pp. 735-744
    • Muttil, N.1    Chau, K.W.2
  • 47
    • 0031209593 scopus 로고    scopus 로고
    • Determining the saliency of input variables in neural network classifiers
    • Nath R., Rajagopalan B., Ryker R. Determining the saliency of input variables in neural network classifiers. Computers & Operations Research 1997, 24:767-773.
    • (1997) Computers & Operations Research , vol.24 , pp. 767-773
    • Nath, R.1    Rajagopalan, B.2    Ryker, R.3
  • 48
    • 0037102687 scopus 로고    scopus 로고
    • Illuminating the " black box": a randomization approach for understanding variable contributions in artificial neural networks
    • Olden J.D., Jackson D.A. Illuminating the " black box": a randomization approach for understanding variable contributions in artificial neural networks. Ecological Modelling 2002, 154:135-150.
    • (2002) Ecological Modelling , vol.154 , pp. 135-150
    • Olden, J.D.1    Jackson, D.A.2
  • 49
    • 3242721368 scopus 로고    scopus 로고
    • An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data
    • Olden J.D., Joy M.K., Death R.G. An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data. Ecological Modelling 2004, 178:389-397.
    • (2004) Ecological Modelling , vol.178 , pp. 389-397
    • Olden, J.D.1    Joy, M.K.2    Death, R.G.3
  • 50
  • 52
    • 56349087070 scopus 로고    scopus 로고
    • Using multi-layer perceptrons to predict the presence of jellyfish of the genus Physalia at New Zealand beaches
    • Pontin D.R., Watts M.J., Worner S.P. Using multi-layer perceptrons to predict the presence of jellyfish of the genus Physalia at New Zealand beaches. International Joint Conference on Neural Networks 2008, 1171-1176.
    • (2008) International Joint Conference on Neural Networks , pp. 1171-1176
    • Pontin, D.R.1    Watts, M.J.2    Worner, S.P.3
  • 53
    • 70349135091 scopus 로고    scopus 로고
    • Using time lagged input data to improve prediction of stinging jellyfish occurrence at New Zealand beaches by multi-layer perceptrons
    • Pontin D.R., Worner S.P., Watts M.J. Using time lagged input data to improve prediction of stinging jellyfish occurrence at New Zealand beaches by multi-layer perceptrons. Lecture Notes in Computer Science 2009, 5506:907-914.
    • (2009) Lecture Notes in Computer Science , vol.5506 , pp. 907-914
    • Pontin, D.R.1    Worner, S.P.2    Watts, M.J.3
  • 54
    • 0030130727 scopus 로고    scopus 로고
    • A quantitative study of experimental evaluations of neural network learning algorithms: current research practice
    • Prechelt L. A quantitative study of experimental evaluations of neural network learning algorithms: current research practice. Neural Networks 1996, 9:457-462.
    • (1996) Neural Networks , vol.9 , pp. 457-462
    • Prechelt, L.1
  • 56
    • 0022471098 scopus 로고
    • Learning representations by back-propagation errors
    • Rumelhart D.E., Hinton G.E., Williams R.J. Learning representations by back-propagation errors. Nature 1986, 323:533-536.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 57
    • 4644223644 scopus 로고    scopus 로고
    • An evaluation of methods for modelling species distributions
    • Segurado P., Araujo M.B. An evaluation of methods for modelling species distributions. Journal of Biogeography 2004, 31:1555-1568.
    • (2004) Journal of Biogeography , vol.31 , pp. 1555-1568
    • Segurado, P.1    Araujo, M.B.2
  • 58
    • 68149171764 scopus 로고    scopus 로고
    • Integrated feature and parameter optimization for an evolving spiking neural network: exploring heterogeneous probabilistic models
    • Schliebs S., Defoin-Platel M.D., Worner S.P., Kasabov N. Integrated feature and parameter optimization for an evolving spiking neural network: exploring heterogeneous probabilistic models. Neural Networks 2009, 22:623-632.
    • (2009) Neural Networks , vol.22 , pp. 623-632
    • Schliebs, S.1    Defoin-Platel, M.D.2    Worner, S.P.3    Kasabov, N.4
  • 62
    • 0031643293 scopus 로고    scopus 로고
    • Validation of a new global wave forecast system at NCEP
    • ASCE, B.L. Edge, J.M. Helmsley (Eds.)
    • Tolman H.L. Validation of a new global wave forecast system at NCEP. Ocean Wave Measurements and Analysis 1998, 777-786. ASCE. B.L. Edge, J.M. Helmsley (Eds.).
    • (1998) Ocean Wave Measurements and Analysis , pp. 777-786
    • Tolman, H.L.1
  • 63
    • 77950368591 scopus 로고    scopus 로고
    • Predicting range shifts of northern bird species: influence of modelling technique and topography
    • Virkkala R., Marmion M., Heikkinen R.K., Thuiller W., Luoto M. Predicting range shifts of northern bird species: influence of modelling technique and topography. Acta Oecologica 2010, 36:269-281.
    • (2010) Acta Oecologica , vol.36 , pp. 269-281
    • Virkkala, R.1    Marmion, M.2    Heikkinen, R.K.3    Thuiller, W.4    Luoto, M.5
  • 65
    • 32144432097 scopus 로고    scopus 로고
    • A classification approach for power distribution systems fault cause identification
    • Xu L., Chow M.-Y. A classification approach for power distribution systems fault cause identification. IEEE Transactions on Power Systems 2006, 21:53-60.
    • (2006) IEEE Transactions on Power Systems , vol.21 , pp. 53-60
    • Xu, L.1    Chow, M.-Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.