메뉴 건너뛰기




Volumn 178, Issue 4, 2008, Pages 1235-1256

A weighted rough set based method developed for class imbalance learning

Author keywords

Class imbalance learning; Rough sets; Rule extraction; Sample weighting; Weighted entropy

Indexed keywords

ALGORITHMS; DECISION MAKING; PROBLEM SOLVING; SUPPORT VECTOR MACHINES; SYSTEMS ANALYSIS;

EID: 36549024482     PISSN: 00200255     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ins.2007.10.002     Document Type: Article
Times cited : (77)

References (61)
  • 1
    • 27144531570 scopus 로고    scopus 로고
    • A study of the behavior of several methods for balancing machine learning training data
    • Batista G., Prati R.C., and Monard M.C. A study of the behavior of several methods for balancing machine learning training data. SIGKDD Explorations 6 1 (2004) 20-29
    • (2004) SIGKDD Explorations , vol.6 , Issue.1 , pp. 20-29
    • Batista, G.1    Prati, R.C.2    Monard, M.C.3
  • 2
    • 0000255880 scopus 로고    scopus 로고
    • A comparison of dynamic and non-dynamic rough set methods for extracting laws from decision tables
    • Polkowski L., and Skowron A. (Eds), Phisica-Verlag, Heidelberg
    • Bazan J. A comparison of dynamic and non-dynamic rough set methods for extracting laws from decision tables. In: Polkowski L., and Skowron A. (Eds). Rough Sets in Knowledge Discovery (1998), Phisica-Verlag, Heidelberg 321-365
    • (1998) Rough Sets in Knowledge Discovery , pp. 321-365
    • Bazan, J.1
  • 3
    • 0035502119 scopus 로고    scopus 로고
    • Reducts within the variable precision rough sets model: a further investigation
    • Beynon M. Reducts within the variable precision rough sets model: a further investigation. European Journal of Operational Research 134 (2001) 592-605
    • (2001) European Journal of Operational Research , vol.134 , pp. 592-605
    • Beynon, M.1
  • 4
    • 36549081970 scopus 로고    scopus 로고
    • C. Blake, E. Keogh, C.J. Merz, UCI Repository of Machine Learning Databases, Dept. of Information and Computer Science, Univ. of California, Irvine, 1998. Available from: .
  • 5
    • 9444295412 scopus 로고    scopus 로고
    • U. Brefeld, P. Geibel, F. Wysotzki, Support vector machines with example dependent costs, in: N. Lavrac, D. Gamberger, L. Todorovski, H. Blockeel (Eds.), Proc. 14th European Conf. Machine Learning, ECML'03, Cavtat, Croatia, 2003, pp. 23-34.
  • 6
    • 36549061524 scopus 로고    scopus 로고
    • N. Chawla, N. Japkowicz, A. Kolcz (Eds.), Proc. ICML'03 Workshop on Learning from Imbalanced Data Sets (II), Washington DC, USA, 2003. Available from: .
  • 7
    • 27144549260 scopus 로고    scopus 로고
    • Chawla N., Japkowicz N., and Kolcz A. (Eds)
    • In: Chawla N., Japkowicz N., and Kolcz A. (Eds). Special Issues on Learning from Imbalanced Data Sets. SIGKDD Explorations 6 1 (2004) 1-6
    • (2004) SIGKDD Explorations , vol.6 , Issue.1 , pp. 1-6
  • 9
    • 36549000781 scopus 로고    scopus 로고
    • C. Drummond, R.C. Holte, C4.5, class imbalance, and cost sensitivity: why under-sampling beats over-sampling, in: N. Chawla, N. Japkowicz, A. Kolcz (Eds.), Proc. ICML'03 Workshop on Learning from Imbalanced Data Sets (II), Washington DC, USA, 2003. Available from: .
  • 10
    • 0032205549 scopus 로고    scopus 로고
    • Uncertainty measures of rough set prediction
    • Duntsch I., and Gediga G. Uncertainty measures of rough set prediction. Artificial Intelligence 106 1 (1998) 109-137
    • (1998) Artificial Intelligence , vol.106 , Issue.1 , pp. 109-137
    • Duntsch, I.1    Gediga, G.2
  • 12
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to ROC analysis
    • Fawcett T. An introduction to ROC analysis. Pattern Recognition Letters 27 (2006) 861-874
    • (2006) Pattern Recognition Letters , vol.27 , pp. 861-874
    • Fawcett, T.1
  • 13
    • 36549045117 scopus 로고    scopus 로고
    • U.M. Fayyad, K.B. Irani, Multi-interval discretization of continuous-valued attributes for classification learning, in: R. Bajcsy (Eds.), Proc. 13th Int. Joint Conf. Artificial Intelligence, IJCAI'93, Chambery, France, 1993, pp. 1022-1027.
  • 18
    • 0003562954 scopus 로고    scopus 로고
    • A simple generalization of the area under the ROC curve to multiple class classification problems
    • Hand D.J., and Till R.J. A simple generalization of the area under the ROC curve to multiple class classification problems. Machine Learning 45 2 (2001) 171-186
    • (2001) Machine Learning , vol.45 , Issue.2 , pp. 171-186
    • Hand, D.J.1    Till, R.J.2
  • 19
    • 85130633757 scopus 로고    scopus 로고
    • Data mining via discretization, generalization and rough set feature selection
    • Hu X.-H., and Cercone N. Data mining via discretization, generalization and rough set feature selection. Knowledge and Information Systems 1 1 (1999) 33-60
    • (1999) Knowledge and Information Systems , vol.1 , Issue.1 , pp. 33-60
    • Hu, X.-H.1    Cercone, N.2
  • 22
    • 32644440353 scopus 로고    scopus 로고
    • Information-preserving hybrid data reduction based on fuzzy-rough techniques
    • Hu Q.-H., Yu D.-R., and Xie Z.-X. Information-preserving hybrid data reduction based on fuzzy-rough techniques. Pattern Recognition Letters 27 5 (2006) 414-423
    • (2006) Pattern Recognition Letters , vol.27 , Issue.5 , pp. 414-423
    • Hu, Q.-H.1    Yu, D.-R.2    Xie, Z.-X.3
  • 23
    • 33645801018 scopus 로고    scopus 로고
    • Fuzzy probabilistic approximation spaces and their information measures
    • Hu Q.-H., Yu D.-R., Xie Z.-X., and Liu J.-F. Fuzzy probabilistic approximation spaces and their information measures. IEEE Transactions on Fuzzy Systems 14 2 (2006) 191-201
    • (2006) IEEE Transactions on Fuzzy Systems , vol.14 , Issue.2 , pp. 191-201
    • Hu, Q.-H.1    Yu, D.-R.2    Xie, Z.-X.3    Liu, J.-F.4
  • 24
    • 36549063790 scopus 로고    scopus 로고
    • N. Japkowicz, Learning from imbalanced data sets: a comparison of various strategies, in: N. Japkowicz (Eds.), Proc. AAAI'00 Workshop on Learning from Imbalanced Data Sets, Technical Report WS-00-05, AAAI Press, Menlo Park, CA, 2000, pp. 10-15.
  • 25
    • 36549042515 scopus 로고    scopus 로고
    • N. Japkowicz (Eds.), Proc. AAAI'00 Workshop on Learning from Imbalanced Data Sets, Technical Report WS-00-05, AAAI Press, Menlo Park, CA, 2000.
  • 26
    • 33845536164 scopus 로고    scopus 로고
    • The class imbalance problem: A systematic study
    • Japkowicz N., and Stephen S. The class imbalance problem: A systematic study. Intelligent Data Analysis 6 5 (2002) 429-450
    • (2002) Intelligent Data Analysis , vol.6 , Issue.5 , pp. 429-450
    • Japkowicz, N.1    Stephen, S.2
  • 27
    • 0033079944 scopus 로고    scopus 로고
    • Rules in incomplete information systems
    • Kryszkiewicz M. Rules in incomplete information systems. Information Sciences 113 3-4 (1999) 271-292
    • (1999) Information Sciences , vol.113 , Issue.3-4 , pp. 271-292
    • Kryszkiewicz, M.1
  • 28
    • 0035156139 scopus 로고    scopus 로고
    • Comparative study of alternative type of knowledge reduction in inconsistent systems
    • Kryszkiewicz M. Comparative study of alternative type of knowledge reduction in inconsistent systems. International Journal of Intelligent Systems 16 (2001) 105-120
    • (2001) International Journal of Intelligent Systems , vol.16 , pp. 105-120
    • Kryszkiewicz, M.1
  • 31
    • 34547542031 scopus 로고    scopus 로고
    • T.-H. Ma, M.-L. Tang, Weighted rough set model, in: Y. Chen, A. Abraham (Eds.), Proc. 6th Int. Conf. Intelligent Systems Design and Applications, ISDA'06, Jinan, Shandong, China, 2006, pp. 481-485.
  • 32
    • 36549068271 scopus 로고    scopus 로고
    • M.A. Maloof, Learning when data sets are imbalanced and when costs are unequal and unknown, in: N. Chawla, N. Japkowicz, A. Kolcz (Eds.), Proc. ICML'03 Workshop on Learning from Imbalanced Data Sets (II), Washington DC, USA, 2003. Available from: .
  • 33
    • 1642525195 scopus 로고    scopus 로고
    • Approaches to knowledge reduction based on variable precision rough set model
    • Mi J.-S., Wu W.-Z., and Zhang W.-X. Approaches to knowledge reduction based on variable precision rough set model. Information Sciences 159 (2004) 255-272
    • (2004) Information Sciences , vol.159 , pp. 255-272
    • Mi, J.-S.1    Wu, W.-Z.2    Zhang, W.-X.3
  • 34
    • 0003046840 scopus 로고
    • A theory and methodology of inductive learning
    • Michalski R.S., Carbonell J.G., and Mitchell T.M. (Eds), Morgan Kaufmann, San Mateo, CA
    • Michalski R.S. A theory and methodology of inductive learning. In: Michalski R.S., Carbonell J.G., and Mitchell T.M. (Eds). Machine Learning: an Artificial Intelligence Approach (1983), Morgan Kaufmann, San Mateo, CA 83-134
    • (1983) Machine Learning: an Artificial Intelligence Approach , pp. 83-134
    • Michalski, R.S.1
  • 37
    • 0036851028 scopus 로고    scopus 로고
    • Rough sets and intelligent data analysis
    • Pawlak Z. Rough sets and intelligent data analysis. Information Sciences 147 (2002) 1-12
    • (2002) Information Sciences , vol.147 , pp. 1-12
    • Pawlak, Z.1
  • 39
    • 33749667344 scopus 로고    scopus 로고
    • Rough sets: some extensions
    • Pawlak Z., and Skowron A. Rough sets: some extensions. Information Sciences 177 1 (2007) 28-40
    • (2007) Information Sciences , vol.177 , Issue.1 , pp. 28-40
    • Pawlak, Z.1    Skowron, A.2
  • 40
  • 41
    • 33749668975 scopus 로고    scopus 로고
    • Rough sets and boolean reasoning
    • Pawlak Z., and Skowron A. Rough sets and boolean reasoning. Information Sciences 177 1 (2007) 41-73
    • (2007) Information Sciences , vol.177 , Issue.1 , pp. 41-73
    • Pawlak, Z.1    Skowron, A.2
  • 42
    • 9444270977 scopus 로고    scopus 로고
    • Class imbalances versus class overlapping: an analysis of a learning system behavior
    • Monroy R., Arroyo G., Sucar L.E., and Sossa H. (Eds), Springer-Verlag, Heidelberg
    • Prati R.C., Batista G.E.A.P.A., and Monard M.C. Class imbalances versus class overlapping: an analysis of a learning system behavior. In: Monroy R., Arroyo G., Sucar L.E., and Sossa H. (Eds). Proc. 3rd Mexican Int. Conf. Artificial Intelligence, MICAI'04, LNAI 2972 (2004), Springer-Verlag, Heidelberg 312-321
    • (2004) Proc. 3rd Mexican Int. Conf. Artificial Intelligence, MICAI'04, LNAI 2972 , pp. 312-321
    • Prati, R.C.1    Batista, G.E.A.P.A.2    Monard, M.C.3
  • 43
    • 85101511266 scopus 로고    scopus 로고
    • Analysis and visualization of classifier performance: comparison under imprecise class and cost distributions
    • Heckerman D., Mannila H., and Pregibon D. (Eds), AAAI Press, Menlo Park, CA
    • Provost F.J., and Fawcett T. Analysis and visualization of classifier performance: comparison under imprecise class and cost distributions. In: Heckerman D., Mannila H., and Pregibon D. (Eds). Proc. 3rd Int. Conf. Knowledge Discovery and Data Mining, KDD'97 (1997), AAAI Press, Menlo Park, CA 43-48
    • (1997) Proc. 3rd Int. Conf. Knowledge Discovery and Data Mining, KDD'97 , pp. 43-48
    • Provost, F.J.1    Fawcett, T.2
  • 46
    • 0036833247 scopus 로고    scopus 로고
    • A rough-fuzzy approach for generating classification rules
    • Shen Q., and Chouchoulas A. A rough-fuzzy approach for generating classification rules. Pattern Recognition 35 11 (2002) 2425-2438
    • (2002) Pattern Recognition , vol.35 , Issue.11 , pp. 2425-2438
    • Shen, Q.1    Chouchoulas, A.2
  • 47
    • 36549028371 scopus 로고    scopus 로고
    • D. Slezak, Approximate reducts in decision tables, in: B. Bouchon-Meunier, M. Delgado, J.L. Verdegay, M.A. Vila, R.R. Yager (Eds.), Proc. 6th Int. Conf. Information Processing and Management of Uncertainty in Knowledge-based System, IPMU'96, Granada, Spain, 1996, pp. 1159-1164.
  • 48
    • 0036948613 scopus 로고    scopus 로고
    • Approximate entropy reducts
    • Slezak D. Approximate entropy reducts. Fundamenta Informaticae 53 3-4 (2002) 365-390
    • (2002) Fundamenta Informaticae , vol.53 , Issue.3-4 , pp. 365-390
    • Slezak, D.1
  • 49
    • 0002865353 scopus 로고    scopus 로고
    • On rough set based approaches to induction of decision rules
    • Polkowski L., and Skowron A. (Eds), Physica-Verlag, Heidelberg
    • Stefanowski J. On rough set based approaches to induction of decision rules. In: Polkowski L., and Skowron A. (Eds). Rough Sets in Knowledge Discovery (1998), Physica-Verlag, Heidelberg 501-529
    • (1998) Rough Sets in Knowledge Discovery , pp. 501-529
    • Stefanowski, J.1
  • 50
    • 33747062126 scopus 로고    scopus 로고
    • Rough sets for handling imbalanced data: combining filtering and rule-based classifiers
    • Stefanowski J., and Wilk S. Rough sets for handling imbalanced data: combining filtering and rule-based classifiers. Fundamenta Informaticae 72 1 (2006) 379-391
    • (2006) Fundamenta Informaticae , vol.72 , Issue.1 , pp. 379-391
    • Stefanowski, J.1    Wilk, S.2
  • 51
    • 28244467848 scopus 로고    scopus 로고
    • Posterior probability support vector machines for unbalanced data
    • Tao Q., Wu G.-W., Wang F.-Y., and Wang J. Posterior probability support vector machines for unbalanced data. IEEE Transactions on Neural Networks 16 6 (2005) 1561-1573
    • (2005) IEEE Transactions on Neural Networks , vol.16 , Issue.6 , pp. 1561-1573
    • Tao, Q.1    Wu, G.-W.2    Wang, F.-Y.3    Wang, J.4
  • 52
    • 0036565589 scopus 로고    scopus 로고
    • An instance-weighting method to induce cost-sensitive trees
    • Ting K.M. An instance-weighting method to induce cost-sensitive trees. IEEE Transactions on Knowledge and Data Engineering 14 3 (2002) 659-665
    • (2002) IEEE Transactions on Knowledge and Data Engineering , vol.14 , Issue.3 , pp. 659-665
    • Ting, K.M.1
  • 53
    • 0032291072 scopus 로고    scopus 로고
    • Automated extraction of medical expert system rules from clinical databases based on rough set theory
    • Tsumoto S. Automated extraction of medical expert system rules from clinical databases based on rough set theory. Information Sciences 112 1-4 (1998) 67-84
    • (1998) Information Sciences , vol.112 , Issue.1-4 , pp. 67-84
    • Tsumoto, S.1
  • 54
    • 2342616187 scopus 로고    scopus 로고
    • Mining diagnostic rules from clinical databases using rough sets and medical diagnostic model
    • Tsumoto S. Mining diagnostic rules from clinical databases using rough sets and medical diagnostic model. Information Sciences 162 2 (2004) 65-80
    • (2004) Information Sciences , vol.162 , Issue.2 , pp. 65-80
    • Tsumoto, S.1
  • 55
    • 0037564105 scopus 로고    scopus 로고
    • Rough reduction: in algebra view and information view
    • Wang G.Y. Rough reduction: in algebra view and information view. International Journal of Intelligent Systems 18 6 (2003) 679-688
    • (2003) International Journal of Intelligent Systems , vol.18 , Issue.6 , pp. 679-688
    • Wang, G.Y.1
  • 56
    • 33645310674 scopus 로고    scopus 로고
    • A comparative study of algebra viewpoint and information viewpoint in attribute reduction
    • Wang G.Y., Zhao J., An J.J., et al. A comparative study of algebra viewpoint and information viewpoint in attribute reduction. Fundamenta Informaticae 68 3 (2005) 289-301
    • (2005) Fundamenta Informaticae , vol.68 , Issue.3 , pp. 289-301
    • Wang, G.Y.1    Zhao, J.2    An, J.J.3
  • 57
    • 20844458491 scopus 로고    scopus 로고
    • Mining with rarity: problems and solutions: a unifying framework
    • Weiss G.M. Mining with rarity: problems and solutions: a unifying framework. SIGKDD Explorations 6 1 (2004) 7-19
    • (2004) SIGKDD Explorations , vol.6 , Issue.1 , pp. 7-19
    • Weiss, G.M.1
  • 58
    • 36549009588 scopus 로고    scopus 로고
    • G.M. Weiss, F. Provost, The effect of class distribution on classifier learning: an empirical study, Technical Report ML-TR-44, Dept. of Computer Science, Rutgers University, New Brunswick, NJ, 2001.
  • 59
    • 0035789316 scopus 로고    scopus 로고
    • B. Zadrozny, C. Elkan, Learning and making decisions when costs and probabilities are both unknown, in: F. Provost, R. Srikant (Eds.), Proc. 7th ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, KDD'01, San Francisco, CA, USA, 2001, pp. 204-213.
  • 60
    • 31344442851 scopus 로고    scopus 로고
    • Training cost-sensitive neural networks with methods addressing the class imbalance problem
    • Zhou Z.-H., and Liu X.-Y. Training cost-sensitive neural networks with methods addressing the class imbalance problem. IEEE Transaction on Knowledge and Data Engineering 18 1 (2006) 63-77
    • (2006) IEEE Transaction on Knowledge and Data Engineering , vol.18 , Issue.1 , pp. 63-77
    • Zhou, Z.-H.1    Liu, X.-Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.