메뉴 건너뛰기




Volumn 28, Issue 12, 1997, Pages 1903-1908

Blow-up for the nonlinear Schrödinger equation in nonisotropic spaces

Author keywords

Blow up in finite time; Nonlinear Schr dinger equation

Indexed keywords

CALCULATIONS; FINITE ELEMENT METHOD; FUNCTIONS; MATHEMATICAL TECHNIQUES; OPTIMIZATION; PARTIAL DIFFERENTIAL EQUATIONS;

EID: 0031165953     PISSN: 0362546X     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0362-546X(96)00036-3     Document Type: Article
Times cited : (34)

References (7)
  • 3
    • 36749114276 scopus 로고
    • On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations
    • GLASSEY, R. T., On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations. J. Math. Phys., 1977, 18, 1794-1797.
    • (1977) J. Math. Phys. , vol.18 , pp. 1794-1797
    • Glassey, R.T.1
  • 4
    • 0042062021 scopus 로고
    • Limit of the solution of the nonlinear Schrödinger equation at the blow up time
    • MERLE, F., Limit of the solution of the nonlinear Schrödinger equation at the blow up time. J. Funct. Anal., 1989, 84, 201-214.
    • (1989) J. Funct. Anal. , vol.84 , pp. 201-214
    • Merle, F.1
  • 5
    • 0000835523 scopus 로고
    • 1 solutions for the nonlinear Schrödinger equation
    • 1 solutions for the nonlinear Schrödinger equation. J. Diff. Eqns, 1991, 92, 317-330.
    • (1991) J. Diff. Eqns , vol.92 , pp. 317-330
    • Ogawa, T.1    Tsutsumi, Y.2
  • 6
    • 84968486052 scopus 로고
    • 1 solutions for the one dimensional nonlinear Schrödinger equation with critical power nonlinearity
    • 1 solutions for the one dimensional nonlinear Schrödinger equation with critical power nonlinearity. Proc. Am. Math. Soc., 1991, 111, 487-496.
    • (1991) Proc. Am. Math. Soc. , vol.111 , pp. 487-496
    • Ogawa, T.1    Tsutsumi, Y.2
  • 7
    • 0000540347 scopus 로고
    • Existence of solitary waves in higher dimensions
    • STRAUSS, W. A., Existence of solitary waves in higher dimensions. Comm. Math. Phys., 1977, 55, 149-162.
    • (1977) Comm. Math. Phys. , vol.55 , pp. 149-162
    • Strauss, W.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.