메뉴 건너뛰기




Volumn 35, Issue 5, 2010, Pages 878-905

Divergence of infinite-variance nonradial solutions to the 3D NLS equation

Author keywords

Infinite variance; Nonlinear Schrodinger equation

Indexed keywords


EID: 77950937063     PISSN: 03605302     EISSN: 15324133     Source Type: Journal    
DOI: 10.1080/03605301003646713     Document Type: Article
Times cited : (60)

References (20)
  • 1
    • 5444256656 scopus 로고    scopus 로고
    • Semilinear Schrödinger Equations
    • New York: New York University, Courant Institute of Mathematical Sciences, New York
    • Cazenave, T. (2003). Semilinear Schrödinger Equations. Courant Lecture Notes in Mathematics, Vol. 10. New York: New York University, Courant Institute of Mathematical Sciences, New York.
    • (2003) Courant Lecture Notes In Mathematics , vol.10
    • Cazenave, T.1
  • 2
    • 59349111935 scopus 로고    scopus 로고
    • Scattering for the non-radial 3d cubic nonlinear Schrödinger equation
    • Duyckaerts, T., Holmer, J., Roudenko, S. (2008). Scattering for the non-radial 3d cubic nonlinear Schrödinger equation. Math. Res. Lett. 15:1233-1250.
    • (2008) Math. Res. Lett , vol.15 , pp. 1233-1250
    • Duyckaerts, T.1    Holmer, J.2    Roudenko, S.3
  • 3
    • 84886392712 scopus 로고    scopus 로고
    • Threshold solutions for the focusing 3d cubic Schrödinger equation
    • To appear in
    • Duyckaerts, T., Roudenko, S. Threshold solutions for the focusing 3d cubic Schrödinger equation. To appear in Revista Mat. Iber.
    • Revista Mat. Iber
    • Duyckaerts, T.1    Roudenko, S.2
  • 4
    • 1542429432 scopus 로고
    • Rep. No. R95031, Laboratoire d'Analyse Numérique. Paris: University Pierre and Marie Curie
    • 1 for nonlinear Schrödinger equation. Rep. No. R95031, Laboratoire d'Analyse Numérique. Paris: University Pierre and Marie Curie.
    • (1995) 1 For Nonlinear Schrödinger Equation
    • Glangetas, L.1    Merle, F.2
  • 5
    • 36749114276 scopus 로고
    • On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equation
    • Glassey, R. (1977). On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equation. J. Math. Phys. 18:1794-1797.
    • (1977) J. Math. Phys , vol.18 , pp. 1794-1797
    • Glassey, R.1
  • 6
    • 77949739721 scopus 로고    scopus 로고
    • Behavior of solutions to the 3D cubic nonlinear Schrödinger equation above the mass-energy threshold
    • Holmer, J., Platte, R., Roudenko, S. (2010). Behavior of solutions to the 3D cubic nonlinear Schrödinger equation above the mass-energy threshold. Nonlinearity 23:977-1030.
    • (2010) Nonlinearity , vol.23 , pp. 977-1030
    • Holmer, J.1    Platte, R.2    Roudenko, S.3
  • 7
    • 77955700830 scopus 로고    scopus 로고
    • On blow-up solutions to the 3D cubic nonlinear Schrödinger equation
    • doi:10.1093/amrx/abm004
    • Holmer, J., Roudenko, S. (2007). On blow-up solutions to the 3D cubic nonlinear Schrödinger equation. AMRX Appl. Math. Res. Express 1:abm004; doi:10.1093/amrx/abm004.
    • (2007) AMRX Appl. Math. Res. Express 1:Abm004
    • Holmer, J.1    Roudenko, S.2
  • 8
    • 47749109045 scopus 로고    scopus 로고
    • A sharp condition for scattering of the radial 3d cubic nonlinear Schrödinger equation
    • Holmer, J., Roudenko, S. (2007). A sharp condition for scattering of the radial 3d cubic nonlinear Schrödinger equation. Comm. Math. Phys. 282:435-467.
    • (2007) Comm. Math. Phys , vol.282 , pp. 435-467
    • Holmer, J.1    Roudenko, S.2
  • 9
    • 33750526878 scopus 로고    scopus 로고
    • Global well-posedness, scattering and blow-up for the energy-critical, focusing, nonlinear Schrödinger equation in the radial case
    • Kenig, C.E., Merle, F. (2006). Global well-posedness, scattering and blow-up for the energy-critical, focusing, nonlinear Schrödinger equation in the radial case. Invent. Math. 166:645-675.
    • (2006) Invent. Math , vol.166 , pp. 645-675
    • Kenig, C.E.1    Merle, F.2
  • 10
    • 0035922239 scopus 로고    scopus 로고
    • On the defect of compactness for the Strichartz estimates of the Schrödinger equation
    • Keraani, S. (2001). On the defect of compactness for the Strichartz estimates of the Schrödinger equation. J. Diff. Eq. 175:353-392.
    • (2001) J. Diff. Eq , vol.175 , pp. 353-392
    • Keraani, S.1
  • 11
    • 85030719142 scopus 로고
    • The concentration-compactness principle in the calculus of variations. The locally compact case. II
    • Lions, P.-L., (1984). The concentration-compactness principle in the calculus of variations. The locally compact case. II. Ann. Inst. H. Poincarè Anal. Non Linèaire 1:223-283.
    • (1984) Ann. Inst. H. Poincarè Anal. Non Linèaire , vol.1 , pp. 223-283
    • Lions, P.-L.1
  • 12
    • 0031165953 scopus 로고    scopus 로고
    • Blow-up for the nonlinear Schrödinger equation in nonisotropic spaces
    • Martel, Y. (1997). Blow-up for the nonlinear Schrödinger equation in nonisotropic spaces. Nonlinear Anal. 28:1903-1908.
    • (1997) Nonlinear Anal , vol.28 , pp. 1903-1908
    • Martel, Y.1
  • 13
    • 0030547724 scopus 로고    scopus 로고
    • Blow-up results of virial type for Zakharov equations
    • Merle, F. (1996). Blow-up results of virial type for Zakharov equations. Comm. Math. Phys. 175:433-455.
    • (1996) Comm. Math. Phys , vol.175 , pp. 433-455
    • Merle, F.1
  • 14
    • 50049127248 scopus 로고    scopus 로고
    • 2 supercritical nonlinear Schrödinger equations
    • 2 supercritical nonlinear Schrödinger equations. Amer. J. Math. 130:945-978.
    • (2008) Amer. J. Math , vol.130 , pp. 945-978
    • Merle, F.1    Raphaël, P.2
  • 15
    • 0033484486 scopus 로고    scopus 로고
    • Asymptotic and limiting profiles of blowup solutions of the nonlinear Schrödinger equation with critical power
    • Nawa, H. (1999). Asymptotic and limiting profiles of blowup solutions of the nonlinear Schrödinger equation with critical power. Comm. Pure Appl. Math. 52:193-270.
    • (1999) Comm. Pure Appl. Math , vol.52 , pp. 193-270
    • Nawa, H.1
  • 16
    • 0000835523 scopus 로고
    • 1 solution for the nonlinear Schrödinger equation
    • 1 solution for the nonlinear Schrödinger equation. J. Diff. Eqs. 92:317-330.
    • (1991) J. Diff. Eqs , vol.92 , pp. 317-330
    • Ogawa, T.1    Tsutsumi, Y.2
  • 17
    • 0000540347 scopus 로고
    • Existence of solitary waves in higher dimensions
    • Strauss, W. (1977). Existence of solitary waves in higher dimensions. Comm. Math. Phys. 55:149-162.
    • (1977) Comm. Math. Phys , vol.55 , pp. 149-162
    • Strauss, W.1
  • 18
    • 34249655802 scopus 로고    scopus 로고
    • Nonlinear Dispersive Equations. Local and Global Analysis
    • Providence, RI: American Mathematical Society
    • Tao, T. (2006). Nonlinear Dispersive Equations. Local and Global Analysis. CBMS Regional Conference Series in Mathematics, Vol. 106. Providence, RI: American Mathematical Society.
    • (2006) CBMS Regional Conference Series In Mathematics , vol.106
    • Tao, T.1
  • 19
    • 18644384025 scopus 로고
    • Averaged description of wave beams in linear and nonlinear media (the method of moments)
    • translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika 14:1353-1363
    • Vlasov, S.N., Petrishchev, V.A., Talanov, V.I. (1971). Averaged description of wave beams in linear and nonlinear media (the method of moments). Radiophysics and Quantum Electronics 14:1062-1070; translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika 14:1353-1363.
    • (1971) Radiophysics and Quantum Electronics , vol.14 , pp. 1062-1070
    • Vlasov, S.N.1    Petrishchev, V.A.2    Talanov, V.I.3
  • 20
    • 0041473959 scopus 로고
    • Nonlinear Schrödinger equations and sharp interpolation estimates
    • Weinstein, M. (1982/1983). Nonlinear Schrödinger equations and sharp interpolation estimates. Comm. Math. Phys. 87:567-576.
    • (1982) Comm. Math. Phys , vol.87 , pp. 567-576
    • Weinstein, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.