메뉴 건너뛰기




Volumn 220, Issue 1, 2006, Pages 1-13

Proof of a Spectral Property related to the singularity formation for the L2 critical nonlinear Schrödinger equation

Author keywords

Collapse; Log log law; Nonlinear Schr dinger equation; Self similar solution; Singularity

Indexed keywords

COERCIVE FORCE; COMPUTER AIDED ANALYSIS; NONLINEAR EQUATIONS; SPECTRUM ANALYSIS; THEOREM PROVING; WAVE EQUATIONS;

EID: 33746745308     PISSN: 01672789     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.physd.2006.06.010     Document Type: Article
Times cited : (52)

References (28)
  • 1
    • 0020591567 scopus 로고
    • Nonlinear scalar field equations. I. Existence of a ground state
    • Berestycki H., and Lions P.-L. Nonlinear scalar field equations. I. Existence of a ground state. Arch. Ration. Mech. Anal. 82 4 (1983) 313-345
    • (1983) Arch. Ration. Mech. Anal. , vol.82 , Issue.4 , pp. 313-345
    • Berestycki, H.1    Lions, P.-L.2
  • 2
    • 0000246714 scopus 로고    scopus 로고
    • Construction of blowup solutions for the nonlinear Schrödinger equation with critical nonlinearity
    • ; (1-2) (1998) 197-215
    • Bourgain J., and Wang W. Construction of blowup solutions for the nonlinear Schrödinger equation with critical nonlinearity. Ann. Scer. Norm. Sup. Pisa Cl. Sci. (4) 25 (1997) ; (1-2) (1998) 197-215
    • (1997) Ann. Scer. Norm. Sup. Pisa Cl. Sci. (4) , vol.25
    • Bourgain, J.1    Wang, W.2
  • 3
    • 44049117330 scopus 로고
    • Optical turbulence: Weak turbulence, condensates and collapsing filaments in the nonlinear Schrödinger equation
    • Dyachenko S., Newell A.C., Pushkarev A., and Zakharov V.E. Optical turbulence: Weak turbulence, condensates and collapsing filaments in the nonlinear Schrödinger equation. Physica D 57 1-2 (1992) 96-160
    • (1992) Physica D , vol.57 , Issue.1-2 , pp. 96-160
    • Dyachenko, S.1    Newell, A.C.2    Pushkarev, A.3    Zakharov, V.E.4
  • 4
    • 0342647291 scopus 로고    scopus 로고
    • Self-focusing in the perturbed and unperturbed nonlinear Schrödinger equation in critical dimension
    • Fibich G., and Papanicolaou G. Self-focusing in the perturbed and unperturbed nonlinear Schrödinger equation in critical dimension. SIAM J. Appl. Math. 60 (1999) 183-240
    • (1999) SIAM J. Appl. Math. , vol.60 , pp. 183-240
    • Fibich, G.1    Papanicolaou, G.2
  • 5
    • 0000548165 scopus 로고
    • Asymptotic stability of manifold of self-similar solutions in self-focusing
    • Fraiman G. Asymptotic stability of manifold of self-similar solutions in self-focusing. Sov. Phys. JETP 61 2 (1985) 228-233
    • (1985) Sov. Phys. JETP , vol.61 , Issue.2 , pp. 228-233
    • Fraiman, G.1
  • 6
    • 34250271532 scopus 로고
    • Symmetry and related properties via the maximum principle
    • Gidas B., Ni W.M., and Nirenberg L. Symmetry and related properties via the maximum principle. Comm. Math. Phys. 68 (1979) 209-243
    • (1979) Comm. Math. Phys. , vol.68 , pp. 209-243
    • Gidas, B.1    Ni, W.M.2    Nirenberg, L.3
  • 7
    • 49249148441 scopus 로고
    • On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case
    • Ginibre J., and Velo G. On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case. J. Funct. Anal. 32 1 (1979) 1-32
    • (1979) J. Funct. Anal. , vol.32 , Issue.1 , pp. 1-32
    • Ginibre, J.1    Velo, G.2
  • 9
    • 0000893351 scopus 로고
    • Rate of blowup for solutions of the nonlinear Schrödinger equation at critical dimension
    • Landman M.J., Papanicolaou G.C., Sulem C., and Sulem P.-L. Rate of blowup for solutions of the nonlinear Schrödinger equation at critical dimension. Phys. Rev. A (3) 38 8 (1988) 3837-3843
    • (1988) Phys. Rev. A (3) , vol.38 , Issue.8 , pp. 3837-3843
    • Landman, M.J.1    Papanicolaou, G.C.2    Sulem, C.3    Sulem, P.-L.4
  • 10
    • 0001678668 scopus 로고
    • Local structure of the self-focusing singularity of the nonlinear Schrödinger equation
    • LeMesurier B., Papanicolaou G., Sulem C., and Sulem P. Local structure of the self-focusing singularity of the nonlinear Schrödinger equation. Physica D 32 (1988) 210-226
    • (1988) Physica D , vol.32 , pp. 210-226
    • LeMesurier, B.1    Papanicolaou, G.2    Sulem, C.3    Sulem, P.4
  • 11
    • 0039836023 scopus 로고
    • Computer assisted proofs of stability of matter
    • Computer Aided Proofs in Analysis (Cincinnati, OH, 1989), Springer, New York
    • de la Llave R. Computer assisted proofs of stability of matter. Computer Aided Proofs in Analysis (Cincinnati, OH, 1989). IMA Vol. Math. Appl. vol. 28 (1991), Springer, New York 116-126
    • (1991) IMA Vol. Math. Appl. , vol.28 , pp. 116-126
    • de la Llave, R.1
  • 12
    • 7044224827 scopus 로고    scopus 로고
    • On nonexistence of type II blowup for a supercritical nonlinear heat equation
    • Matano H., and Merle F. On nonexistence of type II blowup for a supercritical nonlinear heat equation. Comm. Pure Appl. Math. 57 11 (2004) 1494-1541
    • (2004) Comm. Pure Appl. Math. , vol.57 , Issue.11 , pp. 1494-1541
    • Matano, H.1    Merle, F.2
  • 13
    • 84974001368 scopus 로고
    • Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power
    • Merle F. Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power. Duke Math. J. 69 2 (1993) 427-454
    • (1993) Duke Math. J. , vol.69 , Issue.2 , pp. 427-454
    • Merle, F.1
  • 14
    • 20444437961 scopus 로고    scopus 로고
    • Blow up dynamic and upper bound on the blow up rate for critical nonlinear Schrödinger equation
    • Merle F., and Raphaël P. Blow up dynamic and upper bound on the blow up rate for critical nonlinear Schrödinger equation. Ann. of Math. 161 1 (2005) 157-222
    • (2005) Ann. of Math. , vol.161 , Issue.1 , pp. 157-222
    • Merle, F.1    Raphaël, P.2
  • 15
    • 0041350485 scopus 로고    scopus 로고
    • Sharp upper bound on the blow up rate for critical nonlinear Schrödinger equation
    • Merle F., and Raphaël P. Sharp upper bound on the blow up rate for critical nonlinear Schrödinger equation. Geom. Funct. Anal. 13 (2003) 591-642
    • (2003) Geom. Funct. Anal. , vol.13 , pp. 591-642
    • Merle, F.1    Raphaël, P.2
  • 16
    • 2942586742 scopus 로고    scopus 로고
    • 2 critical nonlinear Schrödinger equation
    • 2 critical nonlinear Schrödinger equation. Invent. Math. 156 (2004) 565-672
    • (2004) Invent. Math. , vol.156 , pp. 565-672
    • Merle, F.1    Raphaël, P.2
  • 17
    • 30644464564 scopus 로고    scopus 로고
    • Sharp lower bound on the blow up rate for critical nonlinear Schrödinger equation
    • Merle F., and Raphaël P. Sharp lower bound on the blow up rate for critical nonlinear Schrödinger equation. J. Amer. Math. Soc. 19 1 (2006) 37-90
    • (2006) J. Amer. Math. Soc. , vol.19 , Issue.1 , pp. 37-90
    • Merle, F.1    Raphaël, P.2
  • 18
    • 12444281836 scopus 로고    scopus 로고
    • Profiles and quantization of the blow up mass for critical nonlinear Schrödinger equation
    • Merle F., and Raphaël P. Profiles and quantization of the blow up mass for critical nonlinear Schrödinger equation. Comm. Math. Phys. 253 3 (2004) 675-704
    • (2004) Comm. Math. Phys. , vol.253 , Issue.3 , pp. 675-704
    • Merle, F.1    Raphaël, P.2
  • 19
    • 34547283966 scopus 로고    scopus 로고
    • On one blow up point solutions to the critical nonlinear Schrödinger equation
    • Merle F., and Raphaël P. On one blow up point solutions to the critical nonlinear Schrödinger equation. J. Hyperbolic Differ. Equ. 2 4 (2006)
    • (2006) J. Hyperbolic Differ. Equ. , vol.2 , Issue.4
    • Merle, F.1    Raphaël, P.2
  • 20
    • 0000664476 scopus 로고    scopus 로고
    • Radiative effects to the adiabatic dynamics of envelope-wave solitons
    • Pelinovsky D. Radiative effects to the adiabatic dynamics of envelope-wave solitons. Physica D 119 3-4 (1998) 301-313
    • (1998) Physica D , vol.119 , Issue.3-4 , pp. 301-313
    • Pelinovsky, D.1
  • 21
    • 0035537074 scopus 로고    scopus 로고
    • On the blow up phenomenon for the critical nonlinear Schrödinger equation in 1D
    • Perelman G. On the blow up phenomenon for the critical nonlinear Schrödinger equation in 1D. Ann. Henri Poincaré 2 (2001) 605-673
    • (2001) Ann. Henri Poincaré , vol.2 , pp. 605-673
    • Perelman, G.1
  • 22
    • 13844296411 scopus 로고    scopus 로고
    • Stability of the log-log bound for blow up solutions to the critical nonlinear Schrödinger equation
    • Raphaël P. Stability of the log-log bound for blow up solutions to the critical nonlinear Schrödinger equation. Math. Ann. 331 3 (2005) 577-609
    • (2005) Math. Ann. , vol.331 , Issue.3 , pp. 577-609
    • Raphaël, P.1
  • 24
    • 3042974553 scopus 로고
    • Computer assisted lower bounds for atomic energies
    • Computer Aided Proofs in Analysis (Cincinnati, OH, 1989), Springer, New York
    • Seco, and Luis A. Computer assisted lower bounds for atomic energies. Computer Aided Proofs in Analysis (Cincinnati, OH, 1989). IMA Vol. Math. Appl. vol. 28 (1991), Springer, New York 241-251
    • (1991) IMA Vol. Math. Appl. , vol.28 , pp. 241-251
    • Seco1    Luis, A.2
  • 25
    • 0003405464 scopus 로고    scopus 로고
    • Springer-Verlag, New York
    • Sulem C., and Sulem P.L. The Nonlinear Schrödinger Equation. Self-focusing and Wave Collapse. Applied Mathematical Sciences vol. 139 (1999), Springer-Verlag, New York
    • (1999) Applied Mathematical Sciences , vol.139
    • Sulem, C.1    Sulem, P.L.2
  • 26
    • 0041473959 scopus 로고
    • Nonlinear Schrödinger equations and sharp interpolation estimates
    • Weinstein M.I. Nonlinear Schrödinger equations and sharp interpolation estimates. Comm. Math. Phys. 87 (1983) 567-576
    • (1983) Comm. Math. Phys. , vol.87 , pp. 567-576
    • Weinstein, M.I.1
  • 27
    • 0000686130 scopus 로고
    • Modulational stability of ground states of nonlinear Schrödinger equations
    • Weinstein M.I. Modulational stability of ground states of nonlinear Schrödinger equations. SIAM J. Math. Anal. 16 (1985) 472-491
    • (1985) SIAM J. Math. Anal. , vol.16 , pp. 472-491
    • Weinstein, M.I.1
  • 28
    • 0002557939 scopus 로고
    • Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in non-linear media
    • Zakharov V.E., and Shabat A.B. Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in non-linear media. Sov. Phys. JETP 34 (1972) 62-69
    • (1972) Sov. Phys. JETP , vol.34 , pp. 62-69
    • Zakharov, V.E.1    Shabat, A.B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.