메뉴 건너뛰기




Volumn 20, Issue 3, 2011, Pages 403-415

Estimation of adaptive neuro-fuzzy inference system parameters with the expectation maximization algorithm and extended Kalman smoother

Author keywords

Adaptive neuro fuzzy inference system (ANFIS); Dynamic model; Estimation; Expectation maximization (EM) algorithm; Extended Kalman smoother (EKS)

Indexed keywords

ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM; BENCHMARK FUNCTIONS; COMPUTING TIME; EM ALGORITHMS; EXPECTATION MAXIMIZATION (EM) ALGORITHM; EXPECTATION-MAXIMIZATION ALGORITHMS; EXTENDED KALMAN SMOOTHER (EKS); FUNCTION APPROXIMATION; INITIAL VALUES; KALMAN SMOOTHER; OPTIMAL PERFORMANCE; PREDICTION PROBLEM; SUPERVISED LEARNING METHODS; TRAINING METHODS;

EID: 79952817756     PISSN: 09410643     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00521-010-0406-4     Document Type: Article
Times cited : (15)

References (41)
  • 1
    • 0027601884 scopus 로고
    • ANFIS: adaptive network based fuzzy inference systems
    • Jang JSR (1993) ANFIS: adaptive network based fuzzy inference systems. IEEE Trans Syst Man Cybern 23: 665-685.
    • (1993) IEEE Trans Syst Man Cybern , vol.23 , pp. 665-685
    • Jang, J.S.R.1
  • 2
    • 33751417312 scopus 로고    scopus 로고
    • Identification and control of power plant de-superheater using soft computing techniques
    • Ghaffari A, Mehrabian AR, Mohammad-Zaheri M (2007) Identification and control of power plant de-superheater using soft computing techniques. Eng Appl Artif Intell 20(2): 273-287.
    • (2007) Eng Appl Artif Intell , vol.20 , Issue.2 , pp. 273-287
    • Ghaffari, A.1    Mehrabian, A.R.2    Mohammad-Zaheri, M.3
  • 4
    • 67349110175 scopus 로고    scopus 로고
    • Modular neural networks with applications to pattern profiling problems
    • Tseng HC, Almogahed B (2009) Modular neural networks with applications to pattern profiling problems. Neurocomputing 72(10-12): 2093-2100.
    • (2009) Neurocomputing , vol.72 , Issue.10-12 , pp. 2093-2100
    • Tseng, H.C.1    Almogahed, B.2
  • 6
    • 59649125893 scopus 로고    scopus 로고
    • Training ANFIS as an identifier with intelligent hybrid stable learning algorithm based on particle swarm optimization and extended Kalman filter
    • Shoorehdeli MA, Teshnehlab M, Sedigh AK (2009) Training ANFIS as an identifier with intelligent hybrid stable learning algorithm based on particle swarm optimization and extended Kalman filter. Fuzzy Sets Syst 160(7): 922-948.
    • (2009) Fuzzy Sets Syst , vol.160 , Issue.7 , pp. 922-948
    • Shoorehdeli, M.A.1    Teshnehlab, M.2    Sedigh, A.K.3
  • 8
    • 33751245602 scopus 로고    scopus 로고
    • Recurrent neuro-fuzzy hybrid-learning approach to accurate system modelling
    • Li C, Cheng K-H (2007) Recurrent neuro-fuzzy hybrid-learning approach to accurate system modelling. Fuzzy Sets Syst 158(2): 194-212.
    • (2007) Fuzzy Sets Syst , vol.158 , Issue.2 , pp. 194-212
    • Li, C.1    Cheng, K.-H.2
  • 9
    • 0033078158 scopus 로고    scopus 로고
    • A new method for constructing membership functions and fuzzy rules from training examples
    • Wu R, Chen S (1999) A new method for constructing membership functions and fuzzy rules from training examples. IEEE Trans Syst Man Cybern B 29: 25-40.
    • (1999) IEEE Trans Syst Man Cybern B , vol.29 , pp. 25-40
    • Wu, R.1    Chen, S.2
  • 10
    • 70350534585 scopus 로고    scopus 로고
    • Speeding up the scaled conjugate gradient algorithm and its application in neuro-fuzzy classifier training
    • Cetişli B, Barkana A (2010) Speeding up the scaled conjugate gradient algorithm and its application in neuro-fuzzy classifier training. Soft Comput 14(4): 365-378.
    • (2010) Soft Comput , vol.14 , Issue.4 , pp. 365-378
    • Cetişli, B.1    Barkana, A.2
  • 12
    • 59649112625 scopus 로고    scopus 로고
    • Learning the membership function contexts for mining fuzzy association rules by using genetic algorithms
    • Alcalá-Fdez J, Alcalá R, Gacto MJ, Herrera F (2009) Learning the membership function contexts for mining fuzzy association rules by using genetic algorithms. Fuzzy Sets Syst 160(7): 905-921.
    • (2009) Fuzzy Sets Syst , vol.160 , Issue.7 , pp. 905-921
    • Alcalá-Fdez, J.1    Alcalá, R.2    Gacto, M.J.3    Herrera, F.4
  • 13
    • 0039721726 scopus 로고    scopus 로고
    • Towards neuro-linguistic modeling: constraints for optimization of membership functions
    • de Oliveira JV (1999) Towards neuro-linguistic modeling: constraints for optimization of membership functions. Fuzzy Sets Syst 106(3): 357-380.
    • (1999) Fuzzy Sets Syst , vol.106 , Issue.3 , pp. 357-380
    • de Oliveira, J.V.1
  • 15
    • 0036888758 scopus 로고    scopus 로고
    • Training fuzzy systems with the extended Kalman filter
    • Simon D (2002) Training fuzzy systems with the extended Kalman filter. Fuzzy Sets Syst 132: 189-199.
    • (2002) Fuzzy Sets Syst , vol.132 , pp. 189-199
    • Simon, D.1
  • 16
    • 0036826054 scopus 로고    scopus 로고
    • Training radial basis neural networks with the extended Kalman filter
    • Simon D (2002) Training radial basis neural networks with the extended Kalman filter. Neurocomputing 48: 455-475.
    • (2002) Neurocomputing , vol.48 , pp. 455-475
    • Simon, D.1
  • 17
    • 0036826111 scopus 로고    scopus 로고
    • RBF networks training using a dual extended Kalman filter
    • Ciocoiu IB (2002) RBF networks training using a dual extended Kalman filter. Neurocomputing 48: 609-622.
    • (2002) Neurocomputing , vol.48 , pp. 609-622
    • Ciocoiu, I.B.1
  • 18
    • 0037338265 scopus 로고    scopus 로고
    • Dual extended Kalman filtering in recurrent neural networks
    • Leung C-S, Chan L-W (2003) Dual extended Kalman filtering in recurrent neural networks. Neural Netw 16(2): 223-239.
    • (2003) Neural Netw , vol.16 , Issue.2 , pp. 223-239
    • Leung, C.-S.1    Chan, L.-W.2
  • 20
    • 0042333460 scopus 로고    scopus 로고
    • State estimation and multi-sensor data fusion using data-based neuro-fuzzy local linearization process models
    • Harris CJ, Gan Q (2001) State estimation and multi-sensor data fusion using data-based neuro-fuzzy local linearization process models. Inf Fusion 2(1): 17-29.
    • (2001) Inf Fusion , vol.2 , Issue.1 , pp. 17-29
    • Harris, C.J.1    Gan, Q.2
  • 21
    • 0035899606 scopus 로고    scopus 로고
    • A fuzzy model based state estimator
    • Layne JR, Passino K (2001) A fuzzy model based state estimator. Fuzzy Sets Syst 122(1): 45-72.
    • (2001) Fuzzy Sets Syst , vol.122 , Issue.1 , pp. 45-72
    • Layne, J.R.1    Passino, K.2
  • 24
    • 33846238110 scopus 로고    scopus 로고
    • Real-time motion planning of an autonomous mobile manipulator using a fuzzy adaptive Kalman filter
    • Najjaran H, Goldenberg A (2007) Real-time motion planning of an autonomous mobile manipulator using a fuzzy adaptive Kalman filter. Rob Auton Syst 55(2): 96-106.
    • (2007) Rob Auton Syst , vol.55 , Issue.2 , pp. 96-106
    • Najjaran, H.1    Goldenberg, A.2
  • 25
    • 70349607324 scopus 로고    scopus 로고
    • A generalized Takagi-Sugeno-Kang recurrent fuzzy-neural filter for adaptive noise cancellation
    • de Rubio J, Pacheco J (2009) A generalized Takagi-Sugeno-Kang recurrent fuzzy-neural filter for adaptive noise cancellation. Neural Comput Appl 18: 633-641.
    • (2009) Neural Comput Appl , vol.18 , pp. 633-641
    • de Rubio, J.1    Pacheco, J.2
  • 26
    • 1842702843 scopus 로고    scopus 로고
    • Learning nonlinear dynamical systems using the expectation-maximization algorithm
    • S. Haykin (Ed.), New York: Wiley
    • Roweis S, Ghahramani Z (2001) Learning nonlinear dynamical systems using the expectation-maximization algorithm. In: Haykin S (ed) Kalman filtering and neural networks, Chap. 6. Wiley, New York, pp 175-220.
    • (2001) Kalman Filtering and Neural Networks, Chap. 6 , pp. 175-220
    • Roweis, S.1    Ghahramani, Z.2
  • 28
    • 0031645103 scopus 로고    scopus 로고
    • Nonlinear state space learning with EM and neural networks
    • Constantinides T, Kung SY, Niranjan M, Wilson E (ed), (NNSP98)Cambridge, England
    • de Freitas N, Niranjan M, Gee A (1998) Nonlinear state space learning with EM and neural networks. In: Constantinides T, Kung SY, Niranjan M, Wilson E (ed) IEEE workshop on neural networks for signal processing. (NNSP98). Cambridge, England, pp 254-263.
    • (1998) IEEE workshop on neural networks for signal processing , pp. 254-263
    • de Freitas, N.1    Niranjan, M.2    Gee, A.3
  • 29
    • 85024429815 scopus 로고
    • A new approach to linear filtering and prediction problems
    • Kalman RE (1960) A new approach to linear filtering and prediction problems. Trans ASME J Basic Eng 82(D): 35-45.
    • (1960) Trans ASME J Basic Eng , vol.82 , Issue.D , pp. 35-45
    • Kalman, R.E.1
  • 31
    • 21644483999 scopus 로고
    • Maximum likelihood estimates of linear dynamic systems
    • Rauch HE, Tung F, Striebel CT (1965) Maximum likelihood estimates of linear dynamic systems. AIAA J 3(8): 445-1450.
    • (1965) AIAA J , vol.3 , Issue.8 , pp. 445-1450
    • Rauch, H.E.1    Tung, F.2    Striebel, C.T.3
  • 34
    • 4344606737 scopus 로고    scopus 로고
    • Estimation of parameters in latent class models using fuzzy clustering algorithms
    • Yang M-S, Yu N-Y (2005) Estimation of parameters in latent class models using fuzzy clustering algorithms. Eur J Oper Res 160(2): 515-531.
    • (2005) Eur J Oper Res , vol.160 , Issue.2 , pp. 515-531
    • Yang, M.-S.1    Yu, N.-Y.2
  • 35
    • 0036501404 scopus 로고    scopus 로고
    • Mixture density estimation with group membership functions
    • Yang X, Liu J (2002) Mixture density estimation with group membership functions. Pattern Recognit Lett 23(5): 501-512.
    • (2002) Pattern Recognit Lett , vol.23 , Issue.5 , pp. 501-512
    • Yang, X.1    Liu, J.2
  • 36
    • 68849097314 scopus 로고    scopus 로고
    • A hybrid learning algorithm with a similarity-based pruning strategy for self-adaptive neuro-fuzzy systems
    • Leng G, Zeng X-J, Keane JA (2009) A hybrid learning algorithm with a similarity-based pruning strategy for self-adaptive neuro-fuzzy systems. Applied Soft Computing 9(4): 1354-1366.
    • (2009) Applied Soft Computing , vol.9 , Issue.4 , pp. 1354-1366
    • Leng, G.1    Zeng, X.-J.2    Keane, J.A.3
  • 38
    • 79952815355 scopus 로고    scopus 로고
    • UCI Machine Learning Group
    • UCI Machine Learning Group, www. ics. uci. edu/~mlearn.
  • 39
    • 0036791593 scopus 로고    scopus 로고
    • Modified Gath-Geva fuzzy clustering for identification of Takagi-Sugeno fuzzy models
    • Abonyi J, Babuska R, Szeifert F (2002) Modified Gath-Geva fuzzy clustering for identification of Takagi-Sugeno fuzzy models. IEEE Trans Syst Man Cybern B Cybern 32(5): 612-621.
    • (2002) IEEE Trans Syst Man Cybern B Cybern , vol.32 , Issue.5 , pp. 612-621
    • Abonyi, J.1    Babuska, R.2    Szeifert, F.3
  • 41
    • 67349150788 scopus 로고    scopus 로고
    • Eliciting compact T-S fuzzy models using subtractive clustering and coevolutionary particle swarm optimization
    • Zhao L, Yang Y, Zeng Y (2009) Eliciting compact T-S fuzzy models using subtractive clustering and coevolutionary particle swarm optimization. Neurocomputing 72(10-12): 2569-2575.
    • (2009) Neurocomputing , vol.72 , Issue.10-12 , pp. 2569-2575
    • Zhao, L.1    Yang, Y.2    Zeng, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.