메뉴 건너뛰기




Volumn 160, Issue 7, 2009, Pages 922-948

Training ANFIS as an identifier with intelligent hybrid stable learning algorithm based on particle swarm optimization and extended Kalman filter

Author keywords

ANFIS; Extended Kalman filter; Hybrid learning algorithm; Identification; Particle swarm optimization; Stability analysis

Indexed keywords

ADAPTIVE ALGORITHMS; ALGORITHMS; CELLULAR RADIO SYSTEMS; CONTROL THEORY; CURVE FITTING; EDUCATION; EXTENDED KALMAN FILTERS; FUZZY INFERENCE; FUZZY SYSTEMS; INFERENCE ENGINES; KALMAN FILTERS; LEARNING ALGORITHMS; LEARNING SYSTEMS; MEMBERSHIP FUNCTIONS; OPTIMIZATION; POSITION CONTROL; PROGRAMMING THEORY; STABILITY; SYSTEM STABILITY;

EID: 59649125893     PISSN: 01650114     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.fss.2008.09.011     Document Type: Article
Times cited : (102)

References (100)
  • 3
    • 50249107984 scopus 로고    scopus 로고
    • A novel hybrid learning algorithm for tuning ANFIS parameters using adaptive weighted PSO
    • M.Sh. Aliyari, M. Teshnehlab, A.K. Sedigh, A novel hybrid learning algorithm for tuning ANFIS parameters using adaptive weighted PSO, in: IEEE Internat. Fuzzy System Conf., 2007.
    • (2007) IEEE Internat. Fuzzy System Conf
    • Aliyari, M.S.1    Teshnehlab, M.2    Sedigh, A.K.3
  • 8
    • 0000635694 scopus 로고    scopus 로고
    • Identifying fuzzy models utilizing genetic programming
    • Bastian A. Identifying fuzzy models utilizing genetic programming. Fuzzy Sets and Systems 113 (2000) 335-350
    • (2000) Fuzzy Sets and Systems , vol.113 , pp. 335-350
    • Bastian, A.1
  • 9
    • 40949144519 scopus 로고    scopus 로고
    • Neuro-fuzzy dynamic model with Kalman filter to forecast irradiance and temperature for solar energy systems
    • Chaabene M., and Ammar M.B. Neuro-fuzzy dynamic model with Kalman filter to forecast irradiance and temperature for solar energy systems. Renewable Energy 33 7 (2008) 1435-1443
    • (2008) Renewable Energy , vol.33 , Issue.7 , pp. 1435-1443
    • Chaabene, M.1    Ammar, M.B.2
  • 10
    • 28344449332 scopus 로고    scopus 로고
    • An optimized Takagi-Sugeno type neuro-fuzzy system for modeling robot manipulators
    • Chatterjee A., and Watanabe K. An optimized Takagi-Sugeno type neuro-fuzzy system for modeling robot manipulators. Neural Comput. Appl. 15 1 (2006) 55-61
    • (2006) Neural Comput. Appl. , vol.15 , Issue.1 , pp. 55-61
    • Chatterjee, A.1    Watanabe, K.2
  • 12
    • 18744430576 scopus 로고    scopus 로고
    • A comparative study of learning methods in tuning parameters of fuzzy membership functions
    • Man and Cybernetics
    • M.S. Chen, A comparative study of learning methods in tuning parameters of fuzzy membership functions, in: IEEE Conf. on System Man and Cybernetics, 1999.
    • (1999) IEEE Conf. on System
    • Chen, M.S.1
  • 13
    • 34250856811 scopus 로고    scopus 로고
    • Automatic design of hierarchical Takagi-Sugeno type fuzzy systems using evolutionary algorithms
    • Chen Y., Yang B., Abraham A., and Peng L. Automatic design of hierarchical Takagi-Sugeno type fuzzy systems using evolutionary algorithms. IEEE Trans. Fuzzy Systems 15 3 (2007)
    • (2007) IEEE Trans. Fuzzy Systems , vol.15 , Issue.3
    • Chen, Y.1    Yang, B.2    Abraham, A.3    Peng, L.4
  • 14
    • 0036493488 scopus 로고    scopus 로고
    • Use of intelligent-particle swarm optimization in electromagnetic
    • Ciuprina G., Ioan D., and Munteanu I. Use of intelligent-particle swarm optimization in electromagnetic. IEEE Trans. Magn. 38 2 (2002) 1037-1040
    • (2002) IEEE Trans. Magn. , vol.38 , Issue.2 , pp. 1037-1040
    • Ciuprina, G.1    Ioan, D.2    Munteanu, I.3
  • 15
    • 84901421400 scopus 로고    scopus 로고
    • The Swarm and the Queen: Towards a deterministic and adaptive particle swarm optimization
    • M. Clerc, The Swarm and the Queen: towards a deterministic and adaptive particle swarm optimization, in: Proc. IEEE Internat. Conf. on Evolutionary Computation, 1999.
    • (1999) Proc. IEEE Internat. Conf. on Evolutionary Computation
    • Clerc, M.1
  • 16
    • 3142756516 scopus 로고    scopus 로고
    • Handling multiple objectives with particle swarm optimization
    • Coello C.A.C., Pulido G., and Lechuga M. Handling multiple objectives with particle swarm optimization. IEEE Trans. Evol. Comput. 8 3 (2004) 256-279
    • (2004) IEEE Trans. Evol. Comput. , vol.8 , Issue.3 , pp. 256-279
    • Coello, C.A.C.1    Pulido, G.2    Lechuga, M.3
  • 20
    • 84901470581 scopus 로고    scopus 로고
    • Multiobjective optimization using dynamic neighborhood particle swarm optimization
    • R.C. Eberhart, X. Hu, Multiobjective optimization using dynamic neighborhood particle swarm optimization, in: Proc. IEEE Congr. on Evolutionary Computation, 2002.
    • (2002) Proc. IEEE Congr. on Evolutionary Computation
    • Eberhart, R.C.1    Hu, X.2
  • 22
    • 0033666935 scopus 로고    scopus 로고
    • Comparing inertia weights and constriction factors in particle swarm optimization
    • R.C. Eberhart, Y. Shi, Comparing inertia weights and constriction factors in particle swarm optimization, in: Proc. Congr. on Evolutionary Computation, 2000.
    • (2000) Proc. Congr. on Evolutionary Computation
    • Eberhart, R.C.1    Shi, Y.2
  • 24
    • 0037707290 scopus 로고    scopus 로고
    • Simple and conditioned adaptive behavior from Kalman filter trained recurrent networks
    • Feldkamp L.A., Prokhorov D.V., and Feldkamp T.M. Simple and conditioned adaptive behavior from Kalman filter trained recurrent networks. Neural Networks 16 (2003) 683-689
    • (2003) Neural Networks , vol.16 , pp. 683-689
    • Feldkamp, L.A.1    Prokhorov, D.V.2    Feldkamp, T.M.3
  • 26
    • 33744532121 scopus 로고    scopus 로고
    • Multiobjective control of power plants using particle swarm optimization techniques
    • Heo J.S., Lee K.Y., and Garduno-Ramirez R. Multiobjective control of power plants using particle swarm optimization techniques. IEEE Trans. Energy Convers. 21 2 (2006) 552-561
    • (2006) IEEE Trans. Energy Convers. , vol.21 , Issue.2 , pp. 552-561
    • Heo, J.S.1    Lee, K.Y.2    Garduno-Ramirez, R.3
  • 27
    • 22044450246 scopus 로고    scopus 로고
    • A particle swarm optimization-based method for multiobjective design optimizations
    • Ho S.L., Yang S., Ni G., Lo E.W.C., and Wong H.C. A particle swarm optimization-based method for multiobjective design optimizations. IEEE Trans. Magn. 41 5 (2005) 1756-1759
    • (2005) IEEE Trans. Magn. , vol.41 , Issue.5 , pp. 1756-1759
    • Ho, S.L.1    Yang, S.2    Ni, G.3    Lo, E.W.C.4    Wong, H.C.5
  • 28
    • 0242384545 scopus 로고
    • Averages on the move
    • Hoehn L., and Niven I. Averages on the move. Math. Mag. 58 (1985) 151-156
    • (1985) Math. Mag. , vol.58 , pp. 151-156
    • Hoehn, L.1    Niven, I.2
  • 30
    • 0026841022 scopus 로고
    • A real-time learning algorithm for a multilayered neural network based on the extended Kalman filter
    • Iiguni Y., Sakai H., and Tokumaru H. A real-time learning algorithm for a multilayered neural network based on the extended Kalman filter. IEEE Trans. Signal Process. 40 (1992) 959-966
    • (1992) IEEE Trans. Signal Process. , vol.40 , pp. 959-966
    • Iiguni, Y.1    Sakai, H.2    Tokumaru, H.3
  • 31
    • 0031148216 scopus 로고    scopus 로고
    • On-line optimization of fuzzy systems
    • Jacomet M., Stahel A., and Walti R. On-line optimization of fuzzy systems. Inform. Sci. 98 (1997) 301-313
    • (1997) Inform. Sci. , vol.98 , pp. 301-313
    • Jacomet, M.1    Stahel, A.2    Walti, R.3
  • 32
    • 0027601884 scopus 로고
    • ANFIS: adaptive-network-based fuzzy inference system
    • Jang J.S.R. ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Systems Man and Cybernet. 23 3 (1993)
    • (1993) IEEE Trans. Systems Man and Cybernet. , vol.23 , Issue.3
    • Jang, J.S.R.1
  • 33
    • 59649094209 scopus 로고    scopus 로고
    • J.S.R. Jang, ANFIS: Adaptive-Network-based Fuzzy Inference System, Research reported, 1993.
    • J.S.R. Jang, ANFIS: Adaptive-Network-based Fuzzy Inference System, Research reported, 1993.
  • 37
    • 0036531230 scopus 로고    scopus 로고
    • A TSK-type recurrent fuzzy network for dynamic systems processing by neural network and genetic algorithms
    • Juang C.F. A TSK-type recurrent fuzzy network for dynamic systems processing by neural network and genetic algorithms. IEEE Trans. Fuzzy Systems 10 (2002) 155-170
    • (2002) IEEE Trans. Fuzzy Systems , vol.10 , pp. 155-170
    • Juang, C.F.1
  • 38
    • 34548151841 scopus 로고    scopus 로고
    • Recurrent fuzzy network design using hybrid evolutionary learning algorithms
    • Juang C.-F., and Chung I.-F. Recurrent fuzzy network design using hybrid evolutionary learning algorithms. Neurocomputing 70 (2007) 3001-3010
    • (2007) Neurocomputing , vol.70 , pp. 3001-3010
    • Juang, C.-F.1    Chung, I.-F.2
  • 39
    • 0032681147 scopus 로고    scopus 로고
    • A recurrent self-organizing neural fuzzy inference network
    • Juang C.F., and Lin C.T. A recurrent self-organizing neural fuzzy inference network. IEEE Trans. Neural Networks 10 (1999) 828-845
    • (1999) IEEE Trans. Neural Networks , vol.10 , pp. 828-845
    • Juang, C.F.1    Lin, C.T.2
  • 40
    • 33744768654 scopus 로고    scopus 로고
    • Stability analysis of the particle dynamics in particle swarm optimizer
    • Kadirkamanathan V., Selvarajah K., and Fleming P.J. Stability analysis of the particle dynamics in particle swarm optimizer. IEEE Trans. Evol. Comput. 10 3 (2006) 245-255
    • (2006) IEEE Trans. Evol. Comput. , vol.10 , Issue.3 , pp. 245-255
    • Kadirkamanathan, V.1    Selvarajah, K.2    Fleming, P.J.3
  • 41
    • 39649098478 scopus 로고    scopus 로고
    • Fuzzy controller training using particle swarm optimization for nonlinear system control
    • Karakuzu C. Fuzzy controller training using particle swarm optimization for nonlinear system control. ISA Trans. 47 (2008) 229-239
    • (2008) ISA Trans. , vol.47 , pp. 229-239
    • Karakuzu, C.1
  • 43
    • 0000757605 scopus 로고
    • Stability analysis and stabilization of fuzzy state space models
    • Kim W.C., Ahn S.C., and Kwon W.H. Stability analysis and stabilization of fuzzy state space models. Fuzzy Sets and Systems 71 1 (1995) 131-142
    • (1995) Fuzzy Sets and Systems , vol.71 , Issue.1 , pp. 131-142
    • Kim, W.C.1    Ahn, S.C.2    Kwon, W.H.3
  • 44
    • 0024715766 scopus 로고
    • An adaptive least squares algorithm for the efficient training of artificial neural networks
    • Kollias S., and Anastassiou D. An adaptive least squares algorithm for the efficient training of artificial neural networks. IEEE Trans. Circuits Systems 36 (1989) 1092-1101
    • (1989) IEEE Trans. Circuits Systems , vol.36 , pp. 1092-1101
    • Kollias, S.1    Anastassiou, D.2
  • 45
    • 0031119164 scopus 로고    scopus 로고
    • Neurofuzzy model-based weld fusion state estimation
    • Kovacevic R., and Zhang Y. Neurofuzzy model-based weld fusion state estimation. IEEE Control Systems Mag. 17 2 (1997) 30-42
    • (1997) IEEE Control Systems Mag. , vol.17 , Issue.2 , pp. 30-42
    • Kovacevic, R.1    Zhang, Y.2
  • 46
    • 19644373975 scopus 로고    scopus 로고
    • Intelligent learning of fuzzy logic controllers via neural network and genetic algorithm
    • M. Kumar, D.P. Garg, Intelligent learning of fuzzy logic controllers via neural network and genetic algorithm, in: Proc. Japan-USA Symp. on Flexible Automation, 2004.
    • (2004) Proc. Japan-USA Symp. on Flexible Automation
    • Kumar, M.1    Garg, D.P.2
  • 47
    • 0034244894 scopus 로고    scopus 로고
    • Identification and control of dynamic systems using recurrent fuzzy neural networks
    • Lee C.H., and Teng C.C. Identification and control of dynamic systems using recurrent fuzzy neural networks. IEEE Trans. Fuzzy Systems 8 4 (2000) 349-366
    • (2000) IEEE Trans. Fuzzy Systems , vol.8 , Issue.4 , pp. 349-366
    • Lee, C.H.1    Teng, C.C.2
  • 48
    • 33947282595 scopus 로고    scopus 로고
    • Design for self-organizing fuzzy neural networks based on genetic algorithms
    • Leng G., McGinnity T.M., and Prasad G. Design for self-organizing fuzzy neural networks based on genetic algorithms. IEEE Trans. Fuzzy Systems 14 (2006) 755-766
    • (2006) IEEE Trans. Fuzzy Systems , vol.14 , pp. 755-766
    • Leng, G.1    McGinnity, T.M.2    Prasad, G.3
  • 49
    • 0034606765 scopus 로고    scopus 로고
    • An extended Kalman filtering approach with a criterion to set its tuning parameters; application to a catalytic reactor
    • Leu G., and Baratti R. An extended Kalman filtering approach with a criterion to set its tuning parameters; application to a catalytic reactor. Comput. Chem. Eng. (2000) 1839-1849
    • (2000) Comput. Chem. Eng. , pp. 1839-1849
    • Leu, G.1    Baratti, R.2
  • 50
    • 4844222566 scopus 로고    scopus 로고
    • Prediction and identification using wavelet-based recurrent fuzzy neural network
    • Lin C.J., and Chin C.C. Prediction and identification using wavelet-based recurrent fuzzy neural network. IEEE Trans. Systems Man Cybernet. Part B Cybernet. 10 (2004) 2144-2154
    • (2004) IEEE Trans. Systems Man Cybernet. Part B Cybernet. , vol.10 , pp. 2144-2154
    • Lin, C.J.1    Chin, C.C.2
  • 51
    • 33845216232 scopus 로고    scopus 로고
    • Generalized predictive control using recurrent fuzzy neural networks for industrial processes
    • Lu C.H., and Tsai C.C. Generalized predictive control using recurrent fuzzy neural networks for industrial processes. J. Process Control 17 (2007) 83-92
    • (2007) J. Process Control , vol.17 , pp. 83-92
    • Lu, C.H.1    Tsai, C.C.2
  • 52
    • 0017714604 scopus 로고
    • Oscillation and chaos in physical control system
    • Mackey M.C., and Glass L. Oscillation and chaos in physical control system. Science 197 (1977) 287-289
    • (1977) Science , vol.197 , pp. 287-289
    • Mackey, M.C.1    Glass, L.2
  • 53
    • 0031118272 scopus 로고    scopus 로고
    • Fuzzy logic controller with learning through the evolution of its knowledge base
    • Magdalena L., and Monasterio-Huelin F. Fuzzy logic controller with learning through the evolution of its knowledge base. Internat. J. Approx. Reason. 16 (1997) 335-358
    • (1997) Internat. J. Approx. Reason. , vol.16 , pp. 335-358
    • Magdalena, L.1    Monasterio-Huelin, F.2
  • 59
    • 3142781923 scopus 로고    scopus 로고
    • The fully informed particle swarm: simpler, maybe better
    • Mendes R., Kennedy J., and Neves J. The fully informed particle swarm: simpler, maybe better. IEEE Trans. Evol. Comput. 8 3 (2004) 204-210
    • (2004) IEEE Trans. Evol. Comput. , vol.8 , Issue.3 , pp. 204-210
    • Mendes, R.1    Kennedy, J.2    Neves, J.3
  • 60
    • 3142749146 scopus 로고    scopus 로고
    • Learning to play games using a PSO-based competitive learning approach
    • Messerschmidt L., and Engelbrecht A. Learning to play games using a PSO-based competitive learning approach. IEEE Trans. Evol. Comput. 8 3 (2004) 280-288
    • (2004) IEEE Trans. Evol. Comput. , vol.8 , Issue.3 , pp. 280-288
    • Messerschmidt, L.1    Engelbrecht, A.2
  • 61
    • 0037971744 scopus 로고    scopus 로고
    • EPSO-evolutionary particle swarm optimization, a new algorithm with applications in power systems
    • V. Miranda, N. Fonseca, EPSO-evolutionary particle swarm optimization, a new algorithm with applications in power systems, in: Proc. IEEE Trans. Distribution Conf. on Exhibition, 2002.
    • (2002) Proc. IEEE Trans. Distribution Conf. on Exhibition
    • Miranda, V.1    Fonseca, N.2
  • 63
    • 27144449175 scopus 로고    scopus 로고
    • Hybrid particle swarm optimization based distribution state estimation using constriction factor approach
    • S. Naka, T. Genji, T. Yura, Y. Fukuyama, Hybrid particle swarm optimization based distribution state estimation using constriction factor approach, in: Proc. Internat. Conf. on SCIS & ISIS, 2002.
    • (2002) Proc. Internat. Conf. on SCIS & ISIS
    • Naka, S.1    Genji, T.2    Yura, T.3    Fukuyama, Y.4
  • 64
    • 0025399567 scopus 로고
    • Identification and control of dynamical system using neural networks
    • Narendra K.S., and Parthasarathy K. Identification and control of dynamical system using neural networks. IEEE Trans. Neural Networks 1 1 (1990) 4-27
    • (1990) IEEE Trans. Neural Networks , vol.1 , Issue.1 , pp. 4-27
    • Narendra, K.S.1    Parthasarathy, K.2
  • 65
  • 68
    • 0029375851 scopus 로고
    • Gradient calculations for dynamic recurrent neural networks: a survey
    • Pearlmutter B.A. Gradient calculations for dynamic recurrent neural networks: a survey. IEEE Trans. Neural Networks 6 (1995) 1212-12228
    • (1995) IEEE Trans. Neural Networks , vol.6 , pp. 1212-12228
    • Pearlmutter, B.A.1
  • 69
    • 0026679595 scopus 로고
    • Learning and convergence analysis of neural-type structured networks
    • Polycarpou M.M., and Ioannou P.A. Learning and convergence analysis of neural-type structured networks. IEEE Trans. Neural Networks 3 1 (1992) 39-50
    • (1992) IEEE Trans. Neural Networks , vol.3 , Issue.1 , pp. 39-50
    • Polycarpou, M.M.1    Ioannou, P.A.2
  • 70
    • 0028401031 scopus 로고
    • Neurocontrol of nonlinear dynamical systems with Kalman filter trained recurrent networks
    • Puskorius G., and Feldkamp L. Neurocontrol of nonlinear dynamical systems with Kalman filter trained recurrent networks. IEEE Trans. Neural Networks 5 (1994) 279-297
    • (1994) IEEE Trans. Neural Networks , vol.5 , pp. 279-297
    • Puskorius, G.1    Feldkamp, L.2
  • 72
    • 3142768423 scopus 로고    scopus 로고
    • Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients
    • Ratnaweera A., Halgamuge S., and Watson H. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Trans. Evol. Comput. 8 3 (2004) 240-255
    • (2004) IEEE Trans. Evol. Comput. , vol.8 , Issue.3 , pp. 240-255
    • Ratnaweera, A.1    Halgamuge, S.2    Watson, H.3
  • 73
    • 33645070541 scopus 로고    scopus 로고
    • Sequential adaptive fuzzy inference system (SAFIS) for nonlinear system identification and prediction
    • Rong H.-J., Sundararajan N., Huang G.-B., and Saratchandran P. Sequential adaptive fuzzy inference system (SAFIS) for nonlinear system identification and prediction. Fuzzy Sets and Systems 57 (2006) 1260-1275
    • (2006) Fuzzy Sets and Systems , vol.57 , pp. 1260-1275
    • Rong, H.-J.1    Sundararajan, N.2    Huang, G.-B.3    Saratchandran, P.4
  • 74
    • 0029071450 scopus 로고
    • Block-structured recurrent neural networks
    • Satini S., Bimbo A.D., and Jain R. Block-structured recurrent neural networks. Neural Networks 8 (1995) 135-147
    • (1995) Neural Networks , vol.8 , pp. 135-147
    • Satini, S.1    Bimbo, A.D.2    Jain, R.3
  • 75
    • 0026923239 scopus 로고
    • Optimal filtering algorithms for fast learning in feedforward neural networks
    • Shah S., Palmeieri F., and Datum M. Optimal filtering algorithms for fast learning in feedforward neural networks. Neural Networks 5 (1992) 779-787
    • (1992) Neural Networks , vol.5 , pp. 779-787
    • Shah, S.1    Palmeieri, F.2    Datum, M.3
  • 77
    • 0036888758 scopus 로고    scopus 로고
    • Training fuzzy systems with the extended Kalman filter
    • Simon D. Training fuzzy systems with the extended Kalman filter. Fuzzy Sets and Systems 132 (2002) 189-199
    • (2002) Fuzzy Sets and Systems , vol.132 , pp. 189-199
    • Simon, D.1
  • 78
    • 78649598043 scopus 로고
    • Fuzzy logic for digital phase-locked loop filter design
    • Simon D., and El-Sherief H. Fuzzy logic for digital phase-locked loop filter design. IEEE Trans. Fuzzy Systems 3 (1995) 211-218
    • (1995) IEEE Trans. Fuzzy Systems , vol.3 , pp. 211-218
    • Simon, D.1    El-Sherief, H.2
  • 79
    • 0000221272 scopus 로고
    • Training multilayer perceptrons with the extended Kalman algorithm
    • Singhal S., and Wu L. Training multilayer perceptrons with the extended Kalman algorithm. Adv. Neural Inform. Process. System 1 (1989) 133-140
    • (1989) Adv. Neural Inform. Process. System , vol.1 , pp. 133-140
    • Singhal, S.1    Wu, L.2
  • 80
    • 33750202057 scopus 로고    scopus 로고
    • Stability analysis of discrete TSK Type II/III systems
    • Sonbol A.H., and Sami Fadali M. Stability analysis of discrete TSK Type II/III systems. IEEE Trans. Fuzzy Systems 14 5 (2006) 640-653
    • (2006) IEEE Trans. Fuzzy Systems , vol.14 , Issue.5 , pp. 640-653
    • Sonbol, A.H.1    Sami Fadali, M.2
  • 81
  • 83
    • 0000185305 scopus 로고
    • Successive identification of a fuzzy model and its applications to prediction of a complex system
    • Sugeno M., and Tanaka K. Successive identification of a fuzzy model and its applications to prediction of a complex system. Fuzzy Sets and Systems 42 (1991) 315-334
    • (1991) Fuzzy Sets and Systems , vol.42 , pp. 315-334
    • Sugeno, M.1    Tanaka, K.2
  • 84
    • 0030269125 scopus 로고    scopus 로고
    • Genetic optimization of a fuzzy system for charging batteries
    • Surmann H. Genetic optimization of a fuzzy system for charging batteries. IEEE Trans. Ind. Electron. 43 (1996) 541-548
    • (1996) IEEE Trans. Ind. Electron. , vol.43 , pp. 541-548
    • Surmann, H.1
  • 86
    • 3142674350 scopus 로고    scopus 로고
    • An approach to multimodal biomedical image registration utilizing particle swarm optimization
    • Wachowiak M., Smolikova R., Zheng Y., Zurada J., and Elmaghraby A. An approach to multimodal biomedical image registration utilizing particle swarm optimization. IEEE Trans. Evol. Comput. 8 3 (2004) 289-301
    • (2004) IEEE Trans. Evol. Comput. , vol.8 , Issue.3 , pp. 289-301
    • Wachowiak, M.1    Smolikova, R.2    Zheng, Y.3    Zurada, J.4    Elmaghraby, A.5
  • 89
    • 0038560988 scopus 로고    scopus 로고
    • A dynamically generated fuzzy neural network and its application to torsional vibration control of tandem cold rolling mill spindles
    • Wang L., and Frayman Y. A dynamically generated fuzzy neural network and its application to torsional vibration control of tandem cold rolling mill spindles. Eng. Appl. Artif. Intell. 15 (2003) 541-550
    • (2003) Eng. Appl. Artif. Intell. , vol.15 , pp. 541-550
    • Wang, L.1    Frayman, Y.2
  • 90
    • 0026984801 scopus 로고
    • Back-propagation of fuzzy systems as nonlinear dynamic system identifiers
    • L. Wang, J. Mendel, Back-propagation of fuzzy systems as nonlinear dynamic system identifiers, in: IEEE Internat. Conf. on Fuzzy Systems, 1992.
    • (1992) IEEE Internat. Conf. on Fuzzy Systems
    • Wang, L.1    Mendel, J.2
  • 91
    • 0031988675 scopus 로고    scopus 로고
    • Extracting fuzzy rules for system modeling using a hybrid of genetic algorithms and Kalman filter
    • Wang L., and Yen J. Extracting fuzzy rules for system modeling using a hybrid of genetic algorithms and Kalman filter. Fuzzy Sets and Systems 101 3 (1999) 353-362
    • (1999) Fuzzy Sets and Systems , vol.101 , Issue.3 , pp. 353-362
    • Wang, L.1    Yen, J.2
  • 92
    • 0001202594 scopus 로고
    • A learning algorithm for continually running recurrent neural networks
    • Williams R.J., and Zipser D. A learning algorithm for continually running recurrent neural networks. Neural Comput. 1 (1989) 270-280
    • (1989) Neural Comput. , vol.1 , pp. 270-280
    • Williams, R.J.1    Zipser, D.2
  • 93
    • 0033078158 scopus 로고    scopus 로고
    • A new method for constructing membership functions and fuzzy rules from training examples
    • Wu T.P., and Chen S.M. A new method for constructing membership functions and fuzzy rules from training examples. IEEE Trans. Systems Man Cybernet. Part B Cybernet. 29 1 (1999)
    • (1999) IEEE Trans. Systems Man Cybernet. Part B Cybernet. , vol.29 , Issue.1
    • Wu, T.P.1    Chen, S.M.2
  • 95
    • 58849106418 scopus 로고    scopus 로고
    • A note on the trace inequality for products of Hermitian matrix power
    • Yang Z.P., and Feng X.X. A note on the trace inequality for products of Hermitian matrix power. J. Inequalities Pure Appl. Math. 3 5 (2002)
    • (2002) J. Inequalities Pure Appl. Math. , vol.3 , Issue.5
    • Yang, Z.P.1    Feng, X.X.2
  • 96
    • 0034430526 scopus 로고    scopus 로고
    • A particle swarm optimization for reactive power and voltage control considering voltage security assessment
    • Yoshida H., Kawata K., Fukuyama Y., Takayama S., and Naknishi Y. A particle swarm optimization for reactive power and voltage control considering voltage security assessment. IEEE Trans. Power System 15 4 (2000) 1232-1239
    • (2000) IEEE Trans. Power System , vol.15 , Issue.4 , pp. 1232-1239
    • Yoshida, H.1    Kawata, K.2    Fukuyama, Y.3    Takayama, S.4    Naknishi, Y.5
  • 97
    • 0142199978 scopus 로고    scopus 로고
    • Fuzzy neural modeling using stable learning algorithm
    • W. Yu, X. Li, Fuzzy neural modeling using stable learning algorithm, in: Proc. American Control Conf., 2003.
    • (2003) Proc. American Control Conf
    • Yu, W.1    Li, X.2
  • 98
    • 3042549361 scopus 로고    scopus 로고
    • Fuzzy identification using fuzzy neural networks with stable learning algorithms
    • Yu W., and Li X. Fuzzy identification using fuzzy neural networks with stable learning algorithms. IEEE Trans. Fuzzy Systems 12 3 (2004) 411-420
    • (2004) IEEE Trans. Fuzzy Systems , vol.12 , Issue.3 , pp. 411-420
    • Yu, W.1    Li, X.2
  • 99
    • 0033098832 scopus 로고    scopus 로고
    • Recurrent neuro-fuzzy networks for nonlinear process modeling
    • Zhang J., and Morris A.J. Recurrent neuro-fuzzy networks for nonlinear process modeling. IEEE Trans. Neural Networks 10 (1999) 313-326
    • (1999) IEEE Trans. Neural Networks , vol.10 , pp. 313-326
    • Zhang, J.1    Morris, A.J.2
  • 100
    • 0036888736 scopus 로고    scopus 로고
    • A new fuzzy neural network with fast learning algorithm and guaranteed stability for manufacturing process control
    • Zhou Y., Li S., and Jin R. A new fuzzy neural network with fast learning algorithm and guaranteed stability for manufacturing process control. Fuzzy Sets and Systems 132 2 (2002) 201-216
    • (2002) Fuzzy Sets and Systems , vol.132 , Issue.2 , pp. 201-216
    • Zhou, Y.1    Li, S.2    Jin, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.