메뉴 건너뛰기




Volumn 158, Issue 2, 2007, Pages 194-212

Recurrent neuro-fuzzy hybrid-learning approach to accurate system modeling

Author keywords

Hybrid learning (HL); Least square estimation (LSE); Modeling; Random optimization (RO); Recurrent neuro fuzzy system (RNFS); System identification

Indexed keywords

CONFORMAL MAPPING; FUZZY SETS; IDENTIFICATION (CONTROL SYSTEMS); LEAST SQUARES APPROXIMATIONS; MEMBERSHIP FUNCTIONS; PROBLEM SOLVING; RECURRENT NEURAL NETWORKS; SIGNAL DETECTION;

EID: 33751245602     PISSN: 01650114     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.fss.2006.09.002     Document Type: Article
Times cited : (39)

References (26)
  • 1
    • 0026116468 scopus 로고
    • Orthogonal least squares learning algorithm for radial basis function network
    • Chen S., Cowan C.F.N., and Grant P.M. Orthogonal least squares learning algorithm for radial basis function network. IEEE Trans. Neural Networks 2 2 (1991) 302-309
    • (1991) IEEE Trans. Neural Networks , vol.2 , Issue.2 , pp. 302-309
    • Chen, S.1    Cowan, C.F.N.2    Grant, P.M.3
  • 2
    • 0030283350 scopus 로고    scopus 로고
    • Radial basis function based adaptive fuzzy systems and their applications to system identification and prediction
    • Cho K.B., and Wang B.H. Radial basis function based adaptive fuzzy systems and their applications to system identification and prediction. Fuzzy Sets and Systems 83 3 (1996) 325-339
    • (1996) Fuzzy Sets and Systems , vol.83 , Issue.3 , pp. 325-339
    • Cho, K.B.1    Wang, B.H.2
  • 3
    • 0027682168 scopus 로고
    • Synchronization of Lorenz-based chaotic circuits with applications to communications
    • Cuomo K.M., Oppenheim A.V., and Strogatz S.H. Synchronization of Lorenz-based chaotic circuits with applications to communications. IEEE Trans. Circuits Systems II 40 10 (1993) 626-633
    • (1993) IEEE Trans. Circuits Systems II , vol.40 , Issue.10 , pp. 626-633
    • Cuomo, K.M.1    Oppenheim, A.V.2    Strogatz, S.H.3
  • 4
    • 0033721588 scopus 로고    scopus 로고
    • Model-based recurrent neural network for modeling nonlinear dynamic systems
    • Gan C., and Danai K. Model-based recurrent neural network for modeling nonlinear dynamic systems. IEEE Trans. Syst. Man. Cybern. Part B: Cybernetics 30 2 (2000) 344-351
    • (2000) IEEE Trans. Syst. Man. Cybern. Part B: Cybernetics , vol.30 , Issue.2 , pp. 344-351
    • Gan, C.1    Danai, K.2
  • 5
    • 9744257846 scopus 로고    scopus 로고
    • Prediction of chaotic time series based on the recurrent predictor neural network
    • Han M., Xi J., Xu S., and Yin F.-L. Prediction of chaotic time series based on the recurrent predictor neural network. IEEE Trans. Signal Process. 52 12 (2004) 3049-3416
    • (2004) IEEE Trans. Signal Process. , vol.52 , Issue.12 , pp. 3049-3416
    • Han, M.1    Xi, J.2    Xu, S.3    Yin, F.-L.4
  • 6
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik K., Stinchcombe M., and White H. Multilayer feedforward networks are universal approximators. Neural Networks 2 (1989) 359-366
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 7
    • 0027601884 scopus 로고
    • ANFIS: adaptive-network-based fuzzy inference system
    • Jang J.S.R. ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man. Cybern. 23 3 (1993) 665-685
    • (1993) IEEE Trans. Syst. Man. Cybern. , vol.23 , Issue.3 , pp. 665-685
    • Jang, J.S.R.1
  • 8
    • 0004262910 scopus 로고    scopus 로고
    • Prentice-Hall, Englewood Cliffs, NJ
    • Kosko B. Fuzzy Engineering (1997), Prentice-Hall, Englewood Cliffs, NJ
    • (1997) Fuzzy Engineering
    • Kosko, B.1
  • 9
    • 0742290026 scopus 로고    scopus 로고
    • Identification of complex systems based on neural and Takagi-Sugeno fuzzy model
    • Kukolj D., and Levi E. Identification of complex systems based on neural and Takagi-Sugeno fuzzy model. IEEE Trans. Systems Man. Cybern. Part B: Cybernetics 34 1 (2004) 272-282
    • (2004) IEEE Trans. Systems Man. Cybern. Part B: Cybernetics , vol.34 , Issue.1 , pp. 272-282
    • Kukolj, D.1    Levi, E.2
  • 10
    • 0037332304 scopus 로고    scopus 로고
    • Self-organizing neuro-fuzzy system for control of unknown plants
    • Li C., and Lee C.Y. Self-organizing neuro-fuzzy system for control of unknown plants. IEEE Trans. Fuzzy Systems 11 1 (2003) 135-150
    • (2003) IEEE Trans. Fuzzy Systems , vol.11 , Issue.1 , pp. 135-150
    • Li, C.1    Lee, C.Y.2
  • 11
    • 11244339733 scopus 로고    scopus 로고
    • Identification and prediction using recurrent compensatory neuro-fuzzy systems
    • Lin C.-J., and Chen C.-H. Identification and prediction using recurrent compensatory neuro-fuzzy systems. Fuzzy Sets and Systems 150 2 (2005) 307-330
    • (2005) Fuzzy Sets and Systems , vol.150 , Issue.2 , pp. 307-330
    • Lin, C.-J.1    Chen, C.-H.2
  • 12
    • 4844222566 scopus 로고    scopus 로고
    • Prediction and Identification using wavelet-based recurrent fuzzy neural networks
    • Lin C.-J., and Chin C.-C. Prediction and Identification using wavelet-based recurrent fuzzy neural networks. IEEE Trans. Systems Man. Cybern. Part B: Cybernetics 34 5 (2004) 2144-2154
    • (2004) IEEE Trans. Systems Man. Cybern. Part B: Cybernetics , vol.34 , Issue.5 , pp. 2144-2154
    • Lin, C.-J.1    Chin, C.-C.2
  • 13
    • 7244237932 scopus 로고    scopus 로고
    • Supervisory recurrent fuzzy neural network control of wing rock for slender delta wings
    • Lin C.-M., and Hsu C.-F. Supervisory recurrent fuzzy neural network control of wing rock for slender delta wings. IEEE Trans. Fuzzy Systems 12 5 (2004) 733-742
    • (2004) IEEE Trans. Fuzzy Systems , vol.12 , Issue.5 , pp. 733-742
    • Lin, C.-M.1    Hsu, C.-F.2
  • 14
    • 0037525534 scopus 로고    scopus 로고
    • A neuro-fuzzy system modeling with self-constructing rule generation and hybrid SVD-based learning
    • Lee S.J., and Ouyang C.S. A neuro-fuzzy system modeling with self-constructing rule generation and hybrid SVD-based learning. IEEE Trans. Fuzzy Systems 11 3 (2003) 341-353
    • (2003) IEEE Trans. Fuzzy Systems , vol.11 , Issue.3 , pp. 341-353
    • Lee, S.J.1    Ouyang, C.S.2
  • 15
    • 0034244894 scopus 로고    scopus 로고
    • Identification and control of dynamic systems using recurrent fuzzy neural networks
    • Lee C.H., and Teng C.C. Identification and control of dynamic systems using recurrent fuzzy neural networks. IEEE Trans. Fuzzy Systems 8 4 (2000) 349-366
    • (2000) IEEE Trans. Fuzzy Systems , vol.8 , Issue.4 , pp. 349-366
    • Lee, C.H.1    Teng, C.C.2
  • 18
    • 0025399567 scopus 로고
    • Identification and control of dynamical systems using neural networks
    • Narendra S.K., and Parthsarathy K. Identification and control of dynamical systems using neural networks. IEEE Trans. Neural Networks 1 1 (1990) 4-27
    • (1990) IEEE Trans. Neural Networks , vol.1 , Issue.1 , pp. 4-27
    • Narendra, S.K.1    Parthsarathy, K.2
  • 19
    • 0001623515 scopus 로고    scopus 로고
    • Neuro-fuzzy systems for function approximation
    • Nauck D., and Kruse R. Neuro-fuzzy systems for function approximation. Fuzzy Sets and Systems 101 2 (1999) 261-271
    • (1999) Fuzzy Sets and Systems , vol.101 , Issue.2 , pp. 261-271
    • Nauck, D.1    Kruse, R.2
  • 20
    • 0036565201 scopus 로고    scopus 로고
    • Subsethood-product fuzzy neural inference system (SuPFuNIS)
    • Paul S., and Kumar S. Subsethood-product fuzzy neural inference system (SuPFuNIS). IEEE Trans. Neural Networks 13 3 (2002) 578-599
    • (2002) IEEE Trans. Neural Networks , vol.13 , Issue.3 , pp. 578-599
    • Paul, S.1    Kumar, S.2
  • 21
    • 0013529086 scopus 로고
    • Minimization by random research techniques
    • Solis F.J., and Wets J.B. Minimization by random research techniques. Math. Oper. Res. 6 (1989) 367-373
    • (1989) Math. Oper. Res. , vol.6 , pp. 367-373
    • Solis, F.J.1    Wets, J.B.2
  • 22
    • 0005355118 scopus 로고    scopus 로고
    • Application of neural networks incorporated with real-valued genetic algorithms in knowledge acquisition
    • Su M.C., and Chang H.T. Application of neural networks incorporated with real-valued genetic algorithms in knowledge acquisition. Fuzzy Sets and Systems 112 1 (2000) 85-97
    • (2000) Fuzzy Sets and Systems , vol.112 , Issue.1 , pp. 85-97
    • Su, M.C.1    Chang, H.T.2
  • 23
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its applications to modeling and control
    • Takagi T., and Sugeno M. Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Systems Man. Cybern. SMC-15 1 (1985) 116-132
    • (1985) IEEE Trans. Systems Man. Cybern. , vol.SMC-15 , Issue.1 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 24
    • 11244351633 scopus 로고    scopus 로고
    • A hierarchical fuzzy-clustering approach for fuzzy modeling
    • Tsekouras G., Sarimveis H., Kavakli E., and Bafas G. A hierarchical fuzzy-clustering approach for fuzzy modeling. Fuzzy Sets and Systems 150 2 (2005) 245-266
    • (2005) Fuzzy Sets and Systems , vol.150 , Issue.2 , pp. 245-266
    • Tsekouras, G.1    Sarimveis, H.2    Kavakli, E.3    Bafas, G.4
  • 25
    • 0026928374 scopus 로고
    • Fuzzy basis functions, universal approximation, and orthogonal least squares learning
    • Wang L.X., and Mendel J.M. Fuzzy basis functions, universal approximation, and orthogonal least squares learning. IEEE Trans. Neural Networks 3 5 (1992) 807-814
    • (1992) IEEE Trans. Neural Networks , vol.3 , Issue.5 , pp. 807-814
    • Wang, L.X.1    Mendel, J.M.2
  • 26
    • 0034513025 scopus 로고    scopus 로고
    • A GA-based method for constructing fuzzy systems directly from numerical data
    • Wong C.C., and Chen C.C. A GA-based method for constructing fuzzy systems directly from numerical data. IEEE Trans. Systems Man. Cybern. Part B: Cybernetics 30 6 (2000) 904-911
    • (2000) IEEE Trans. Systems Man. Cybern. Part B: Cybernetics , vol.30 , Issue.6 , pp. 904-911
    • Wong, C.C.1    Chen, C.C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.