메뉴 건너뛰기




Volumn 12, Issue , 2011, Pages 593-625

Regression on fixed-rank positive semidefinite matrices: A Riemannian approach

Author keywords

Gradient based learning; Linear regression; Low rank approximation; Positive semidefinite matrices; Riemannian geometry

Indexed keywords

DISTANCE FUNCTIONS; GRADIENT DESCENT ALGORITHMS; GRADIENT-BASED LEARNING; HIGH-DIMENSIONAL PROBLEMS; LINEAR COMPLEXITY; LOW-RANK APPROXIMATION; MATRIX; NONLINEAR NATURE; PARAMETERIZED; POSITIVE SEMIDEFINITE MATRICES; PROBLEM SIZE; RANGE SPACES; REGRESSION MODEL; RIEMANNIAN GEOMETRY; SEARCH SPACES;

EID: 79952746338     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (73)

References (52)
  • 1
    • 1442336159 scopus 로고    scopus 로고
    • Riemannian geometry of Grassmann manifolds with a view on algorithmic computation
    • P.-A. Absil, R. Mahony, and R. Sepulchre. Riemannian geometry of Grassmann manifolds with a view on algorithmic computation. Acta Appl. Math., 80(2):199-220, 2004.
    • (2004) Acta Appl. Math. , vol.80 , Issue.2 , pp. 199-220
    • Absil, P.-A.1    Mahony, R.2    Sepulchre, R.3
  • 3
    • 79952755273 scopus 로고    scopus 로고
    • On learning rotations
    • Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors, MIT Press
    • R. Arora. On learning rotations. In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors, Advances in Neural Information Processing Systems, volume 22, pages 55-63. MIT Press, 2009.
    • (2009) Advances in Neural. Information Processing Systems , vol.22 , pp. 55-63
    • Arora, R.1
  • 4
    • 34548412123 scopus 로고    scopus 로고
    • Geometric means in a novel vector space structure on symmetric positive-definite matrices
    • DOI 10.1137/050637996
    • V. Arsigny, P. Fillard, X. Pennec, and N. Ayache. Geometric means in a novel vector space structure on symmetric positive-definite matrices. SIAM Journal on Matrix Analysis and Applications, 29(1):328-347, 2007. (Pubitemid 351269899)
    • (2006) SIAM Journal on Matrix Analysis and Applications , vol.29 , Issue.1 , pp. 328-347
    • Arsigny, V.1    Fillard, P.2    Pennec, X.3    Ayache, N.4
  • 5
    • 36948999941 scopus 로고    scopus 로고
    • URL, University of California, Irvine, School of Information and Computer Sciences
    • A. Asuncion and D. J. Newman. UCI machine learning repository, 2007. URL http://www.ics. uci.edu/~mlearn/MLRepository.html. University of California, Irvine, School of Information and Computer Sciences.
    • (2007) UCI Machine Learning Repository
    • Asuncion, A.1    Newman, D.J.2
  • 7
    • 72449176330 scopus 로고    scopus 로고
    • Riemannian metric and geometric mean for positive semidefinite matrices of fixed rank
    • S. Bonnabel and R. Sepulchre. Riemannian metric and geometric mean for positive semidefinite matrices of fixed rank. SIAM Journal on Matrix Analysis and Applications, 31(3):1055-1070, 2009.
    • (2009) SIAM Journal on Matrix Analysis and Applications , vol.31 , Issue.3 , pp. 1055-1070
    • Bonnabel, S.1    Sepulchre, R.2
  • 9
    • 0013309537 scopus 로고    scopus 로고
    • Online algorithms and stochastic approximations
    • David Saad, editor, Cambridge University Press
    • L. Bottou. Online algorithms and stochastic approximations. In David Saad, editor, Online Learning and Neural Networks. Cambridge University Press, 1998.
    • (1998) Online Learning and Neural. Networks
    • Bottou, L.1
  • 11
    • 85162035281 scopus 로고    scopus 로고
    • The tradeoffs of large scale learning
    • J. C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, MIT Press
    • L. Bottou and O. Bousquet. The tradeoffs of large scale learning. In J. C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems, volume 20, pages 161-168. MIT Press, 2007.
    • (2007) Advances in Neural. Information Processing Systems , vol.20 , pp. 161-168
    • Bottou, L.1    Bousquet, O.2
  • 13
    • 77952550960 scopus 로고    scopus 로고
    • A new kernelization framework for Mahalanobis distance learning algorithms
    • R. Chatpatanasiri, T. Korsrilabutr, P. Tangchanachaianan, and B. Kijsirikul. A new kernelization framework for Mahalanobis distance learning algorithms. Neurocomputing, 73 (10-12): 1570-1579, 2010.
    • (2010) Neurocomputing , vol.73 , Issue.10-12 , pp. 1570-1579
    • Chatpatanasiri, R.1    Korsrilabutr, T.2    Tangchanachaianan, P.3    Kijsirikul, B.4
  • 14
    • 0031672308 scopus 로고    scopus 로고
    • Global convergence of Oja's subspace algorithm for principal component extraction
    • PII S1045922798003865
    • T. Chen, Y. Hua, and W.-Y. Yan. Global convergence of Oja's subspace algorithm for principal component extraction. IEEE Transaction Neural Networks, 9(1):58-67, 1998. (Pubitemid 128743614)
    • (1998) IEEE Transactions on Neural Networks , vol.9 , Issue.1 , pp. 58-67
    • Chen, T.1    Hua, Y.2    Yan, W.-Y.3
  • 19
    • 0032216898 scopus 로고    scopus 로고
    • The geometry of algorithms with orthogonality constraints
    • PII S0895479895290954
    • A. Edelman, T. A. Arias, and S. T. Smith. The geometry of algorithms with orthogonality constraints. SIAM Journal on Matrix Analysis and Applications, 20(2):303-353, 1998. (Pubitemid 129333771)
    • (1999) SIAM Journal on Matrix Analysis and Applications , vol.20 , Issue.2 , pp. 303-353
    • Edelman, A.1    Arias, T.A.2    Smith, S.T.3
  • 22
    • 84864030708 scopus 로고    scopus 로고
    • Metric learning by collapsing classes
    • Y. Weiss, B. Schölkopf, and J. Platt, editors, MIT Press
    • A. Globerson and S. Roweis. Metric learning by collapsing classes. In Y. Weiss, B. Schölkopf, and J. Platt, editors, Advances in Neural Information Processing Systems, volume 18, pages 451-458. MIT Press, 2005.
    • (2005) Advances in Neural. Information Processing Systems , vol.18 , pp. 451-458
    • Globerson, A.1    Roweis, S.2
  • 25
    • 84858775391 scopus 로고    scopus 로고
    • Online metric learning and fast similarity search
    • D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, MIT Press
    • P. Jain, B. Kulis, I. S. Dhillon, and K. Grauman. Online metric learning and fast similarity search. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, Advances in Neural Information Processing Systems, volume 21, pages 761-768. MIT Press, 2008.
    • (2008) Advances in Neural. Information Processing Systems , vol.21 , pp. 761-768
    • Jain, P.1    Kulis, B.2    Dhillon, I.S.3    Grauman, K.4
  • 26
    • 85162055589 scopus 로고    scopus 로고
    • Inductive regularized learning of kernel functions
    • J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, and A. Culotta, editors, MIT Press
    • P. Jain, B. Kulis, and I. S. Dhillon. Inductive regularized learning of kernel functions. In J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, and A. Culotta, editors, Advances in Neural Information Processing Systems, volume 23, pages 946-954. MIT Press, 2010.
    • (2010) Advances in Neural. Information Processing Systems , vol.23 , pp. 946-954
    • Jain, P.1    Kulis, B.2    Dhillon, I.S.3
  • 28
    • 0008815681 scopus 로고    scopus 로고
    • Exponentiated gradient versus gradient descent for linear predictors
    • January
    • J. Kivinen and M. K. Warmuth. Exponentiated gradient versus gradient descent for linear predictors. Journal of Information and Computation, 132(1):1-64, January 1997.
    • (1997) Journal of Information and Computation , vol.132 , Issue.1 , pp. 1-64
    • Kivinen, J.1    Warmuth, M.K.2
  • 35
    • 0026954958 scopus 로고
    • Principal components, minor components, and linear neural networks
    • E. Oja. Principal components, minor components, and linear neural networks. Neural Networks, 5:927-935, 1992. (Pubitemid 23581250)
    • (1992) Neural Networks , vol.5 , Issue.6 , pp. 927-935
    • Oja Erkki1
  • 37
    • 78549288866 scopus 로고    scopus 로고
    • Guaranteed minimum rank solutions to linear matrix equations via nuclear norm minimization
    • B. Recht, M. Fazel, and P. A. Parrilo. Guaranteed minimum rank solutions to linear matrix equations via nuclear norm minimization. SIAM Review, 52(3):471-501, 2010.
    • (2010) SIAM Review , vol.52 , Issue.3 , pp. 471-501
    • Recht, B.1    Fazel, M.2    Parrilo, P.A.3
  • 38
    • 0033281701 scopus 로고    scopus 로고
    • Improved boosting algorithms using confidence-rated predictions
    • DOI 10.1023/A:1007614523901
    • R. Schapire and Y. Singer. Improved boosting algorithms using confidence-rated predictions. Machine Learning, 37:297-336, 1999. (Pubitemid 32210620)
    • (1999) Machine Learning , vol.37 , Issue.3 , pp. 297-336
    • Schapire, R.E.1    Singer, Y.2
  • 39
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear Component Analysis as a Kernel Eigenvalue Problem
    • B. Schölkopf, A. J. Smola, and K.-R. Müller. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10(3):1299-1319, 1998. (Pubitemid 128463674)
    • (1998) Neural Computation , vol.10 , Issue.5 , pp. 1299-1319
    • Scholkopf, B.1    Smola, A.2    Muller, K.-R.3
  • 42
    • 18844440455 scopus 로고    scopus 로고
    • Covariance, subspace, and intrinsic Cramér-Rao bounds
    • DOI 10.1109/TSP.2005.845428
    • S. T. Smith. Covariance, subspace, and intrinsic Cramér-Rao bounds. IEEE Transactions on Signal Processing, 53(5):1610-1630, 2005. (Pubitemid 40679137)
    • (2005) IEEE Transactions on Signal Processing , vol.53 , Issue.5 , pp. 1610-1630
    • Smith, S.T.1
  • 43
    • 85162021460 scopus 로고    scopus 로고
    • Colored maximum variance unfolding
    • J. C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, MIT Press
    • L. Song, A. Smola, K. Borgwardt, and A. Gretton. Colored maximum variance unfolding. In J. C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems, volume 20, pages 1385-1392. MIT Press, 2007.
    • (2007) Advances in Neural. Information Processing Systems , vol.20 , pp. 1385-1392
    • Song, L.1    Smola, A.2    Borgwardt, K.3    Gretton, A.4
  • 45
    • 84864062501 scopus 로고    scopus 로고
    • Large margin component analysis
    • B. Schölkopf, J. Platt, and T. Hoffman, editors, MIT Press
    • L. Torresani and K. Lee. Large margin component analysis. In B. Schölkopf, J. Platt, and T. Hoffman, editors, Advances in Neural Information Processing Systems, volume 19, pages 1385-1392. MIT Press, 2006.
    • (2006) Advances in Neural. Information Processing Systems , vol.19 , pp. 1385-1392
    • Torresani, L.1    Lee, K.2
  • 46
    • 21844471282 scopus 로고    scopus 로고
    • Matrix exponentiated gradient updates for on-line learning and Bregman projection
    • K. Tsuda, G. Ratsch, and M. Warmuth. Matrix exponentiated gradient updates for on-line learning and Bregman projection. Journal of Machine Learning Research, 6:995-1018, 2005.
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 995-1018
    • Tsuda, K.1    Ratsch, G.2    Warmuth, M.3
  • 48
    • 61749090884 scopus 로고    scopus 로고
    • Distance metric learning for large margin nearest neighbor classification
    • Feb
    • K. Weinberger and L. Saul. Distance metric learning for large margin nearest neighbor classification. Journal of Machine Learning Research, 10 (Feb): 207-244, 2009.
    • (2009) Journal of Machine Learning Research , vol.10 , pp. 207-244
    • Weinberger, K.1    Saul, L.2
  • 50
    • 85133386144 scopus 로고    scopus 로고
    • Distance metric learning with application to clustering with side-information
    • S. Becker, S. Thrun, and K. Obermayer, editors, MIT Press
    • E. P. Xing, A. Y. Ng, M. I. Jordan, and S. Russell. Distance metric learning with application to clustering with side-information. In S. Becker, S. Thrun, and K. Obermayer, editors, Advances in Neural Information Processing Systems, volume 15, pages 505-512. MIT Press, 2002.
    • (2002) Advances in Neural. Information Processing Systems , vol.15 , pp. 505-512
    • Xing, E.P.1    Ng, A.Y.2    Jordan, M.I.3    Russell, S.4
  • 51
    • 35148876898 scopus 로고    scopus 로고
    • Distance metric learning: A comprehensive survey
    • Michigan State University
    • L. Yang. Distance metric learning: a comprehensive survey. Technical report, Michigan State University, 2006.
    • (2006) Technical Report
    • Yang, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.