메뉴 건너뛰기




Volumn 31, Issue 3, 2009, Pages 1055-1070

Riemannian metric and geometric mean for positive semidefinite matrices of fixed rank

Author keywords

Covariance matrices; Geometric mean; Invariant metric; Lie group action; Matrix decomposition; Positive semidefinite matrices; Riemannian quotient manifold; Singular value decomposition; Symmetries

Indexed keywords

COVARIANCE MATRICES; GEOMETRIC MEAN; LIE GROUP ACTIONS; MATRIX DECOMPOSITION; POSITIVE SEMIDEFINITE MATRICES;

EID: 72449176330     PISSN: 08954798     EISSN: 10957162     Source Type: Journal    
DOI: 10.1137/080731347     Document Type: Article
Times cited : (146)

References (34)
  • 1
    • 1442336159 scopus 로고    scopus 로고
    • Riemannian geometry of grassmann manifolds with a view on algorithmic computation
    • P.-A. ABSIL, R. MAHONY, AND R. SEPULCHRE, Riemannian geometry of Grassmann manifolds with a view on algorithmic computation, Acta Appl. Math., 80 (2004), pp. 199-220.
    • (2004) Acta Appl. Math. , vol.80 , pp. 199-220
    • Absil, P.-A.1    Mahony, R.2    Sepulchre, R.3
  • 6
    • 34548412123 scopus 로고    scopus 로고
    • Geometric means in a novel vector space structure on symmetric positive-definite matrices
    • V. ARSIGNY, P. FILLARD, X. PENNEC, AND N. AYACHE, Geometric means in a novel vector space structure on symmetric positive-definite matrices, SIAM J. Matrix Anal. Appl., 29 (2007), pp. 328-347.
    • (2007) SIAM J. Matrix Anal. Appl. , vol.29 , pp. 328-347
    • Arsigny, V.1    Fillard, P.2    Pennec, X.3    Ayache, N.4
  • 7
    • 72449185048 scopus 로고    scopus 로고
    • Innovative tools for radar signal processing based on cartan's geometry of symmetric positive-definite matrices and information geometry
    • Rome, Italy
    • F. BARBARESCO, Innovative tools for radar signal processing based on Cartan's geometry of symmetric positive-definite matrices and information geometry, in Proceedings of the IEEE International Radar Conference, Rome, Italy, 2008.
    • (2008) Proceedings of the IEEE International Radar Conference
    • Barbaresco, F.1
  • 10
    • 0001445688 scopus 로고
    • Entropy differential metric, distance and divergence measures in probability spaces: A unified approach
    • J. BURBEA AND C. R. RAO, Entropy differential metric, distance and divergence measures in probability spaces: A unified approach, J. Multivariate Anal., 12 (1982), pp. 575-596.
    • (1982) J. Multivariate Anal. , vol.12 , pp. 575-596
    • Burbea, J.1    Rao, C.R.2
  • 11
    • 38349053625 scopus 로고    scopus 로고
    • Matrix nearness problems with Bregman divergences
    • I. S. DHILLON AND J. A. TROPP, Matrix nearness problems with Bregman divergences, SIAM J. Matrix Anal. Appl., 29 (2007), pp. 1120-1146.
    • (2007) SIAM J. Matrix Anal. Appl. , vol.29 , pp. 1120-1146
    • Dhillon, I.S.1    Tropp, J.A.2
  • 12
    • 0032216898 scopus 로고    scopus 로고
    • The geometry of algorithms with orthogonality constraints
    • A. EDELMAN, T. A. ARIAS, AND S. T. Smith, The geometry of algorithms with orthogonality constraints, SIAM J. Matrix Anal. Appl., 20 (1998), pp. 303-353.
    • (1998) SIAM J. Matrix Anal. Appl. , vol.20 , pp. 303-353
    • Edelman, A.1    Arias, T.A.2    Smith, S.T.3
  • 14
    • 33750164640 scopus 로고    scopus 로고
    • Riemannian geometry for the statistical analysis of diffusion tensor data
    • P. D. FLETCHER AND S. JOSHI, Riemannian geometry for the statistical analysis of diffusion tensor data, Signal Processing, 87 (2007), pp. 250-262.
    • (2007) Signal Processing , vol.87 , pp. 250-262
    • Fletcher, P.D.1    Joshi, S.2
  • 20
    • 0347117629 scopus 로고    scopus 로고
    • Multivariate normal distributions parametrized as a riemannian symmetric space
    • M. LOVRIĆ, M. MIN-OO, AND E. A. RUH, Multivariate normal distributions parametrized as a Riemannian symmetric space, J. Multivariate Anal., 74 (2000), pp. 36-48.
    • (2000) J. Multivariate Anal. , vol.74 , pp. 36-48
    • Lovrić, M.1    Min-Oo, M.2    Ruh, E.A.3
  • 21
    • 22944439423 scopus 로고    scopus 로고
    • A differential geometric approach to the geometric mean of symmetric positivedefinite matrices
    • M. MOAKHER, A differential geometric approach to the geometric mean of symmetric positivedefinite matrices, SIAM J. Matrix Anal. Appl., 26 (2005), pp. 735-747.
    • (2005) SIAM J. Matrix Anal. Appl. , vol.26 , pp. 735-747
    • Moakher, M.1
  • 22
    • 0036435303 scopus 로고    scopus 로고
    • On the riemannian geometry defined for self-concordant barriers and interior point methods
    • YU. E. NESTEROV AND M. J. TODD, On the Riemannian geometry defined for self-concordant barriers and interior point methods, Found. Comput. Math., 2 (2002), pp. 333-361.
    • (2002) Found. Comput. Math. , vol.2 , pp. 333-361
    • Nesterov, Yu.E.1    Todd, M.J.2
  • 24
    • 0004084830 scopus 로고
    • Semi-riemannian geometry
    • Academic Press, New York
    • B. O'NEILL, Semi-Riemannian Geometry, Pure Appl. Math. 103, Academic Press, New York, 1983.
    • (1983) Pure Appl. Math. , vol.103
    • O'Neill, B.1
  • 25
    • 33749642835 scopus 로고    scopus 로고
    • Intrinsic statistics on riemannian manifolds: Basic tools for geometric measurements
    • X. PENNEC, Intrinsic statistics on Riemannian manifolds: Basic tools for geometric measurements, J. Math. Imaging Vision, 25 (2006), pp. 127-154.
    • (2006) J. Math. Imaging Vision , vol.25 , pp. 127-154
    • Pennec, X.1
  • 27
    • 72449131268 scopus 로고    scopus 로고
    • Habilitation a diriger les recherches
    • France
    • X. PENNEC, Habilitation a diriger les recherches, Universite de Nice, Nice, France, 2006.
    • (2006) Universite de Nice, Nice
    • Pennec, X.1
  • 28
    • 33746137762 scopus 로고    scopus 로고
    • Means of positive numbers and matrices
    • D. PETZ AND R. TEMESI, Means of positive numbers and matrices, SIAM J. Matrix Anal. Appl., 27 (2005), pp. 712-720.
    • (2005) SIAM J. Matrix Anal. Appl. , vol.27 , pp. 712-720
    • Petz, D.1    Temesi, R.2
  • 29
    • 0001438007 scopus 로고
    • Functional calculus for sesquilinear forms and the purification map
    • W. PUSZ AND S. L. WORONOWICZ, Functional calculus for sesquilinear forms and the purification map, Rep. Mathematical Phys., 8 (1975), pp. 159-170.
    • (1975) Rep. Mathematical Phys. , vol.8 , pp. 159-170
    • Pusz, W.1    Woronowicz, S.L.2
  • 31
    • 0037582222 scopus 로고
    • A riemannian geometry of the multivariate normal model
    • L. T. SKOVGAARD, A Riemannian geometry of the multivariate normal model, Scand. J. Statist., 11 (1984), pp. 211-223.
    • (1984) Scand. J. Statist. , vol.11 , pp. 211-223
    • Skovgaard, L.T.1
  • 32
    • 18844440455 scopus 로고    scopus 로고
    • Covariance, subspace, and intrinsic cramér-rao bounds
    • S. T. SMITH, Covariance, subspace, and intrinsic Cramér-Rao bounds, IEEE Trans. Signal Process., 53 (2005), pp. 1610-1630.
    • (2005) IEEE Trans. Signal Process. , vol.53 , pp. 1610-1630
    • Smith, S.T.1
  • 33
    • 21844471282 scopus 로고    scopus 로고
    • Matrix exponentiated gradient updates for online learning and bregman projection
    • K. TSUDA, G. RATSCH, AND M. K. WARMUTH, Matrix exponentiated gradient updates for online learning and Bregman projection, J. Mach. Learn. Res., 36 (2005), pp. 995-1018.
    • (2005) J. Mach. Learn. Res. , vol.36 , pp. 995-1018
    • Tsuda, K.1    Ratsch, G.2    Warmuth, M.K.3
  • 34
    • 72449198845 scopus 로고    scopus 로고
    • The riemannian geometry of the space of positive-definite matrices and its application to the regularization of diffusion tensor MRI data
    • submitted
    • M. ZERAI AND M. MOAKHER, The Riemannian geometry of the space of positive-definite matrices and its application to the regularization of diffusion tensor MRI data, J. Math. Imaging Vision, submitted.
    • J. Math. Imaging Vision
    • Zerai, M.1    Moakher, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.