-
1
-
-
1442336159
-
Riemannian geometry of grassmann manifolds with a view on algorithmic computation
-
P.-A. ABSIL, R. MAHONY, AND R. SEPULCHRE, Riemannian geometry of Grassmann manifolds with a view on algorithmic computation, Acta Appl. Math., 80 (2004), pp. 199-220.
-
(2004)
Acta Appl. Math.
, vol.80
, pp. 199-220
-
-
Absil, P.-A.1
Mahony, R.2
Sepulchre, R.3
-
2
-
-
84884085211
-
-
Princeton University Press, Princeton, NJ
-
P.-A. ABSIL, R. MAHONY, AND R. SEPULCHRE, Optimization Algorithms on Matrix Manifolds, Princeton University Press, Princeton, NJ, 2007.
-
(2007)
Optimization Algorithms on Matrix Manifolds
-
-
Absil, P.-A.1
Mahony, R.2
Sepulchre, R.3
-
3
-
-
70349256064
-
A geometric newton method for oja's vector field
-
P.-A. ABSIL, M. ISHTEVA, L. DE LATHAUWER, AND S. VAN HUFFEL, A geometric Newton method for Oja's vector field, Neural Comput., 21 (2009), pp. 1415-1433.
-
(2009)
Neural Comput.
, vol.21
, pp. 1415-1433
-
-
Absil, P.-A.1
Ishteva, M.2
De Lathauwer, L.3
Van Huffel, S.4
-
4
-
-
2542467065
-
Geometric means
-
T. ANDO, C.-K. LI, AND R. MATHIAS, Geometric means, Linear Algebra Appl., 385 (2004), pp. 305-334.
-
(2004)
Linear Algebra Appl.
, vol.385
, pp. 305-334
-
-
Ando, T.1
Li, C.-K.2
Mathias, R.3
-
6
-
-
34548412123
-
Geometric means in a novel vector space structure on symmetric positive-definite matrices
-
V. ARSIGNY, P. FILLARD, X. PENNEC, AND N. AYACHE, Geometric means in a novel vector space structure on symmetric positive-definite matrices, SIAM J. Matrix Anal. Appl., 29 (2007), pp. 328-347.
-
(2007)
SIAM J. Matrix Anal. Appl.
, vol.29
, pp. 328-347
-
-
Arsigny, V.1
Fillard, P.2
Pennec, X.3
Ayache, N.4
-
7
-
-
72449185048
-
Innovative tools for radar signal processing based on cartan's geometry of symmetric positive-definite matrices and information geometry
-
Rome, Italy
-
F. BARBARESCO, Innovative tools for radar signal processing based on Cartan's geometry of symmetric positive-definite matrices and information geometry, in Proceedings of the IEEE International Radar Conference, Rome, Italy, 2008.
-
(2008)
Proceedings of the IEEE International Radar Conference
-
-
Barbaresco, F.1
-
8
-
-
58249128595
-
Symmetry-preserving observers
-
S. BONNABEL, PH. MARTIN, AND P. ROUCHON, Symmetry-preserving observers, IEEE Trans. Automat. Control, 53 (2008), pp. 2514-2526.
-
(2008)
IEEE Trans. Automat. Control
, vol.53
, pp. 2514-2526
-
-
Bonnabel, S.1
Martin, P.2
Rouchon, P.3
-
10
-
-
0001445688
-
Entropy differential metric, distance and divergence measures in probability spaces: A unified approach
-
J. BURBEA AND C. R. RAO, Entropy differential metric, distance and divergence measures in probability spaces: A unified approach, J. Multivariate Anal., 12 (1982), pp. 575-596.
-
(1982)
J. Multivariate Anal.
, vol.12
, pp. 575-596
-
-
Burbea, J.1
Rao, C.R.2
-
11
-
-
38349053625
-
Matrix nearness problems with Bregman divergences
-
I. S. DHILLON AND J. A. TROPP, Matrix nearness problems with Bregman divergences, SIAM J. Matrix Anal. Appl., 29 (2007), pp. 1120-1146.
-
(2007)
SIAM J. Matrix Anal. Appl.
, vol.29
, pp. 1120-1146
-
-
Dhillon, I.S.1
Tropp, J.A.2
-
12
-
-
0032216898
-
The geometry of algorithms with orthogonality constraints
-
A. EDELMAN, T. A. ARIAS, AND S. T. Smith, The geometry of algorithms with orthogonality constraints, SIAM J. Matrix Anal. Appl., 20 (1998), pp. 303-353.
-
(1998)
SIAM J. Matrix Anal. Appl.
, vol.20
, pp. 303-353
-
-
Edelman, A.1
Arias, T.A.2
Smith, S.T.3
-
14
-
-
33750164640
-
Riemannian geometry for the statistical analysis of diffusion tensor data
-
P. D. FLETCHER AND S. JOSHI, Riemannian geometry for the statistical analysis of diffusion tensor data, Signal Processing, 87 (2007), pp. 250-262.
-
(2007)
Signal Processing
, vol.87
, pp. 250-262
-
-
Fletcher, P.D.1
Joshi, S.2
-
19
-
-
33749262175
-
Learning low-rank kernel matrices
-
Pittsburgh, PA, 2006, ACM, New York
-
B. KULIS, M. SUSTIK, AND I. S. DHILLON, Learning low-rank kernel matrices, in Proceedings of the 23rd International Conference on Machine Learning, Pittsburgh, PA, 2006, ACM, New York, 2006, pp. 505-512.
-
(2006)
Proceedings of the 23rd International Conference on Machine Learning
, pp. 505-512
-
-
Kulis, B.1
Sustik, M.2
Dhillon, I.S.3
-
20
-
-
0347117629
-
Multivariate normal distributions parametrized as a riemannian symmetric space
-
M. LOVRIĆ, M. MIN-OO, AND E. A. RUH, Multivariate normal distributions parametrized as a Riemannian symmetric space, J. Multivariate Anal., 74 (2000), pp. 36-48.
-
(2000)
J. Multivariate Anal.
, vol.74
, pp. 36-48
-
-
Lovrić, M.1
Min-Oo, M.2
Ruh, E.A.3
-
21
-
-
22944439423
-
A differential geometric approach to the geometric mean of symmetric positivedefinite matrices
-
M. MOAKHER, A differential geometric approach to the geometric mean of symmetric positivedefinite matrices, SIAM J. Matrix Anal. Appl., 26 (2005), pp. 735-747.
-
(2005)
SIAM J. Matrix Anal. Appl.
, vol.26
, pp. 735-747
-
-
Moakher, M.1
-
22
-
-
0036435303
-
On the riemannian geometry defined for self-concordant barriers and interior point methods
-
YU. E. NESTEROV AND M. J. TODD, On the Riemannian geometry defined for self-concordant barriers and interior point methods, Found. Comput. Math., 2 (2002), pp. 333-361.
-
(2002)
Found. Comput. Math.
, vol.2
, pp. 333-361
-
-
Nesterov, Yu.E.1
Todd, M.J.2
-
23
-
-
0003694130
-
-
Cambridge University Press, Cambridge, UK
-
P. J. OLVER, Equivalence, Invariants, and Symmetry, Cambridge University Press, Cambridge, UK, 1995.
-
(1995)
Equivalence, Invariants, and Symmetry
-
-
Olver, P.J.1
-
24
-
-
0004084830
-
Semi-riemannian geometry
-
Academic Press, New York
-
B. O'NEILL, Semi-Riemannian Geometry, Pure Appl. Math. 103, Academic Press, New York, 1983.
-
(1983)
Pure Appl. Math.
, vol.103
-
-
O'Neill, B.1
-
25
-
-
33749642835
-
Intrinsic statistics on riemannian manifolds: Basic tools for geometric measurements
-
X. PENNEC, Intrinsic statistics on Riemannian manifolds: Basic tools for geometric measurements, J. Math. Imaging Vision, 25 (2006), pp. 127-154.
-
(2006)
J. Math. Imaging Vision
, vol.25
, pp. 127-154
-
-
Pennec, X.1
-
26
-
-
29344452228
-
A riemannian framework for tensor computing
-
X. PENNEC, P. FILLARD, AND N. AYACHE, A Riemannian framework for tensor computing, International Journal of Computer Vision, 66 (2006), pp. 41-66.
-
(2006)
International Journal of Computer Vision
, vol.66
, pp. 41-66
-
-
Pennec, X.1
Fillard, P.2
Ayache, N.3
-
27
-
-
72449131268
-
Habilitation a diriger les recherches
-
France
-
X. PENNEC, Habilitation a diriger les recherches, Universite de Nice, Nice, France, 2006.
-
(2006)
Universite de Nice, Nice
-
-
Pennec, X.1
-
28
-
-
33746137762
-
Means of positive numbers and matrices
-
D. PETZ AND R. TEMESI, Means of positive numbers and matrices, SIAM J. Matrix Anal. Appl., 27 (2005), pp. 712-720.
-
(2005)
SIAM J. Matrix Anal. Appl.
, vol.27
, pp. 712-720
-
-
Petz, D.1
Temesi, R.2
-
29
-
-
0001438007
-
Functional calculus for sesquilinear forms and the purification map
-
W. PUSZ AND S. L. WORONOWICZ, Functional calculus for sesquilinear forms and the purification map, Rep. Mathematical Phys., 8 (1975), pp. 159-170.
-
(1975)
Rep. Mathematical Phys.
, vol.8
, pp. 159-170
-
-
Pusz, W.1
Woronowicz, S.L.2
-
30
-
-
4444292685
-
-
MIT Press, Cambridge, MA
-
B. SCHOLKOPF, K. TSUDA, AND J.-PH. VERT, Kernel Methods in Computational Biology, MIT Press, Cambridge, MA, 2004.
-
(2004)
Kernel Methods in Computational Biology
-
-
Scholkopf, B.1
Tsuda, K.2
Vert, J.-Ph.3
-
31
-
-
0037582222
-
A riemannian geometry of the multivariate normal model
-
L. T. SKOVGAARD, A Riemannian geometry of the multivariate normal model, Scand. J. Statist., 11 (1984), pp. 211-223.
-
(1984)
Scand. J. Statist.
, vol.11
, pp. 211-223
-
-
Skovgaard, L.T.1
-
32
-
-
18844440455
-
Covariance, subspace, and intrinsic cramér-rao bounds
-
S. T. SMITH, Covariance, subspace, and intrinsic Cramér-Rao bounds, IEEE Trans. Signal Process., 53 (2005), pp. 1610-1630.
-
(2005)
IEEE Trans. Signal Process.
, vol.53
, pp. 1610-1630
-
-
Smith, S.T.1
-
33
-
-
21844471282
-
Matrix exponentiated gradient updates for online learning and bregman projection
-
K. TSUDA, G. RATSCH, AND M. K. WARMUTH, Matrix exponentiated gradient updates for online learning and Bregman projection, J. Mach. Learn. Res., 36 (2005), pp. 995-1018.
-
(2005)
J. Mach. Learn. Res.
, vol.36
, pp. 995-1018
-
-
Tsuda, K.1
Ratsch, G.2
Warmuth, M.K.3
-
34
-
-
72449198845
-
The riemannian geometry of the space of positive-definite matrices and its application to the regularization of diffusion tensor MRI data
-
submitted
-
M. ZERAI AND M. MOAKHER, The Riemannian geometry of the space of positive-definite matrices and its application to the regularization of diffusion tensor MRI data, J. Math. Imaging Vision, submitted.
-
J. Math. Imaging Vision
-
-
Zerai, M.1
Moakher, M.2
|