-
1
-
-
0000555334
-
Resistance to bacterial speck (Pseudomonas tomato) in tomato
-
Pitblado R.E., Kerr E.A. Resistance to bacterial speck (Pseudomonas tomato) in tomato. Acta Hort. 1980, 100:379-382.
-
(1980)
Acta Hort.
, vol.100
, pp. 379-382
-
-
Pitblado, R.E.1
Kerr, E.A.2
-
2
-
-
0026602983
-
The cloned avirulence gene avrPto induces disease resistance in tomato cultivars containing the Pto resistance gene
-
Ronald P.C., et al. The cloned avirulence gene avrPto induces disease resistance in tomato cultivars containing the Pto resistance gene. J. Bacteriol. 1992, 174:1604-1611.
-
(1992)
J. Bacteriol.
, vol.174
, pp. 1604-1611
-
-
Ronald, P.C.1
-
3
-
-
0037205227
-
Two distinct Pseudomonas effector proteins interact with the Pto kinase and activate plant immunity
-
Kim Y.J., et al. Two distinct Pseudomonas effector proteins interact with the Pto kinase and activate plant immunity. Cell 2002, 109:589-598.
-
(2002)
Cell
, vol.109
, pp. 589-598
-
-
Kim, Y.J.1
-
4
-
-
77956112515
-
Playing the 'Harp': evolution of our understanding of hrp/hrc genes
-
Tampakaki A.P., et al. Playing the 'Harp': evolution of our understanding of hrp/hrc genes. Annu. Rev. Phytopathol. 2010, 48:347-370.
-
(2010)
Annu. Rev. Phytopathol.
, vol.48
, pp. 347-370
-
-
Tampakaki, A.P.1
-
5
-
-
0027745893
-
Map-based cloning of a protein kinase gene conferring disease resistance in tomato
-
Martin G.B., et al. Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science 1993, 262:1432-1436.
-
(1993)
Science
, vol.262
, pp. 1432-1436
-
-
Martin, G.B.1
-
6
-
-
0030448263
-
Initiation of plant disease resistance by physical interaction of AvrPto and Pto kinase
-
Tang X., et al. Initiation of plant disease resistance by physical interaction of AvrPto and Pto kinase. Science 1996, 274:2060-2063.
-
(1996)
Science
, vol.274
, pp. 2060-2063
-
-
Tang, X.1
-
7
-
-
0242406897
-
Molecular basis of Pto-mediated resistance to bacterial speck disease
-
Pedley K.F., Martin G.B. Molecular basis of Pto-mediated resistance to bacterial speck disease. Annu. Rev. Phytopathol. 2003, 41:215-243.
-
(2003)
Annu. Rev. Phytopathol.
, vol.41
, pp. 215-243
-
-
Pedley, K.F.1
Martin, G.B.2
-
8
-
-
61349096599
-
SnapShot: plant immune response pathways
-
978.e971-978.e973
-
Panstruga R., et al. SnapShot: plant immune response pathways. Cell 2009, 136. 978.e971-978.e973.
-
(2009)
Cell
, vol.136
-
-
Panstruga, R.1
-
9
-
-
39049176996
-
Use of RNA interference to dissect defense-signaling pathways in rice
-
Mei C., et al. Use of RNA interference to dissect defense-signaling pathways in rice. Methods Mol. Biol. 2007, 354:161-171.
-
(2007)
Methods Mol. Biol.
, vol.354
, pp. 161-171
-
-
Mei, C.1
-
10
-
-
0036743018
-
Virus-induced gene silencing in tomato
-
Liu Y., et al. Virus-induced gene silencing in tomato. Plant J. 2002, 31:777-786.
-
(2002)
Plant J.
, vol.31
, pp. 777-786
-
-
Liu, Y.1
-
11
-
-
3242717050
-
Virus-induced gene silencing in Solanum species
-
Brigneti G., et al. Virus-induced gene silencing in Solanum species. Plant J. 2004, 39:264-272.
-
(2004)
Plant J.
, vol.39
, pp. 264-272
-
-
Brigneti, G.1
-
12
-
-
0038404717
-
Deciphering plant-pathogen communication: fresh perspectives for molecular resistance breeding
-
Hammond-Kosack K.E., Parker J.E. Deciphering plant-pathogen communication: fresh perspectives for molecular resistance breeding. Curr. Opin. Biotechnol. 2003, 14:177-193.
-
(2003)
Curr. Opin. Biotechnol.
, vol.14
, pp. 177-193
-
-
Hammond-Kosack, K.E.1
Parker, J.E.2
-
13
-
-
77950428777
-
Arabidopsis and the plant immune system
-
Nishimura M.T., Dangl J.L. Arabidopsis and the plant immune system. Plant J. 2010, 61:1053-1066.
-
(2010)
Plant J.
, vol.61
, pp. 1053-1066
-
-
Nishimura, M.T.1
Dangl, J.L.2
-
14
-
-
70349585670
-
NB-LRRs work a 'bait and switch' on pathogens
-
Collier S.M., Moffett P. NB-LRRs work a 'bait and switch' on pathogens. Trends Plant Sci. 2009, 14:521-529.
-
(2009)
Trends Plant Sci.
, vol.14
, pp. 521-529
-
-
Collier, S.M.1
Moffett, P.2
-
15
-
-
0030448263
-
Initiation of plant disease resistance by physical interaction of AvrPto and Pto kinase
-
Tang X., et al. Initiation of plant disease resistance by physical interaction of AvrPto and Pto kinase. Science 1996, 274:2060-2063.
-
(1996)
Science
, vol.274
, pp. 2060-2063
-
-
Tang, X.1
-
16
-
-
0034255015
-
AvrPto-dependent Pto-interacting proteins and AvrPto-interacting proteins in tomato
-
Bogdanove A.J., Martin G.B. AvrPto-dependent Pto-interacting proteins and AvrPto-interacting proteins in tomato. Proc. Natl. Acad. Sci. U. S. A. 2000, 97:8836-8840.
-
(2000)
Proc. Natl. Acad. Sci. U. S. A.
, vol.97
, pp. 8836-8840
-
-
Bogdanove, A.J.1
Martin, G.B.2
-
17
-
-
0029560869
-
The tomato gene Pti1 encodes a serine-threonine kinase that is phosphorylated by Pto and is involved in the hypersensitive response
-
Zhou J.-M., et al. The tomato gene Pti1 encodes a serine-threonine kinase that is phosphorylated by Pto and is involved in the hypersensitive response. Cell 1995, 83:925-935.
-
(1995)
Cell
, vol.83
, pp. 925-935
-
-
Zhou, J.-M.1
-
18
-
-
0346687514
-
Two MAPK cascades, NPR1, and TGA transcription factors play a role in Pto-mediated disease resistance in tomato
-
Ekengren S.K., et al. Two MAPK cascades, NPR1, and TGA transcription factors play a role in Pto-mediated disease resistance in tomato. Plant J. 2003, 36:905-917.
-
(2003)
Plant J.
, vol.36
, pp. 905-917
-
-
Ekengren, S.K.1
-
19
-
-
0030581165
-
Tomato Prf is a member of the leucine-rich repeat class of plant disease resistance genes and lies embedded within the Pto kinase gene cluster
-
Salmeron J.M., et al. Tomato Prf is a member of the leucine-rich repeat class of plant disease resistance genes and lies embedded within the Pto kinase gene cluster. Cell 1996, 86:123-133.
-
(1996)
Cell
, vol.86
, pp. 123-133
-
-
Salmeron, J.M.1
-
20
-
-
1842815204
-
RNA interference in crop plants
-
Kusaba M. RNA interference in crop plants. Curr. Opin. Biotechnol. 2009, 15:139-143.
-
(2009)
Curr. Opin. Biotechnol.
, vol.15
, pp. 139-143
-
-
Kusaba, M.1
-
21
-
-
48249105163
-
The F-box protein ACRE189/ACIF1 regulates cell death and defense responses activated during pathogen recognition in tobacco and tomato
-
van den Burg H.A., et al. The F-box protein ACRE189/ACIF1 regulates cell death and defense responses activated during pathogen recognition in tobacco and tomato. Plant Cell 2008, 20:697-719.
-
(2008)
Plant Cell
, vol.20
, pp. 697-719
-
-
van den Burg, H.A.1
-
22
-
-
12444288639
-
Involvement of the small GTPase Rac in the defense responses of tobacco to pathogens
-
Moeder W., et al. Involvement of the small GTPase Rac in the defense responses of tobacco to pathogens. Mol. Plant-Microbe Interact. 2005, 18:116-124.
-
(2005)
Mol. Plant-Microbe Interact.
, vol.18
, pp. 116-124
-
-
Moeder, W.1
-
23
-
-
0033119713
-
Fast forward genetics based on virus-induced gene silencing
-
Baulcombe D.C. Fast forward genetics based on virus-induced gene silencing. Curr. Opin. Plant Biol. 1999, 2:109-113.
-
(1999)
Curr. Opin. Plant Biol.
, vol.2
, pp. 109-113
-
-
Baulcombe, D.C.1
-
24
-
-
0037413710
-
Pseudomonas type III effector AvrPtoB induces plant disease susceptibility by inhibition of host programmed cell death
-
Abramovitch R.B., et al. Pseudomonas type III effector AvrPtoB induces plant disease susceptibility by inhibition of host programmed cell death. EMBO J. 2003, 22:60-69.
-
(2003)
EMBO J.
, vol.22
, pp. 60-69
-
-
Abramovitch, R.B.1
-
25
-
-
0028408961
-
Tomato mutants altered in bacterial disease resistance provide evidence for a new locus controlling pathogen recognition
-
Salmeron J.M., et al. Tomato mutants altered in bacterial disease resistance provide evidence for a new locus controlling pathogen recognition. Plant Cell 1994, 6:511-520.
-
(1994)
Plant Cell
, vol.6
, pp. 511-520
-
-
Salmeron, J.M.1
-
26
-
-
33750988221
-
The tomato NBARC-LRR protein Prf interacts with Pto kinase in vivo to regulate specific plant immunity
-
Mucyn T.S., et al. The tomato NBARC-LRR protein Prf interacts with Pto kinase in vivo to regulate specific plant immunity. Plant Cell 2006, 18:2792-2806.
-
(2006)
Plant Cell
, vol.18
, pp. 2792-2806
-
-
Mucyn, T.S.1
-
27
-
-
75749110990
-
Prf immune complexes of tomato are oligomeric and contain multiple Pto-like kinases that diversify effector recognition
-
Gutierrez J.R., et al. Prf immune complexes of tomato are oligomeric and contain multiple Pto-like kinases that diversify effector recognition. Plant J. 2010, 61:507-518.
-
(2010)
Plant J.
, vol.61
, pp. 507-518
-
-
Gutierrez, J.R.1
-
28
-
-
33644856238
-
Tomato Pto encodes a functional N-myristoylation motif that is required for signal transduction in Nicotiana benthamiana
-
de Vries J.S., et al. Tomato Pto encodes a functional N-myristoylation motif that is required for signal transduction in Nicotiana benthamiana. Plant J. 2006, 45:31-45.
-
(2006)
Plant J.
, vol.45
, pp. 31-45
-
-
de Vries, J.S.1
-
29
-
-
0032101429
-
The myristoylation motif of Pto is not required for disease resistance
-
Loh Y.T., et al. The myristoylation motif of Pto is not required for disease resistance. Mol. Plant-Microbe Interact. 1998, 11:572-576.
-
(1998)
Mol. Plant-Microbe Interact.
, vol.11
, pp. 572-576
-
-
Loh, Y.T.1
-
30
-
-
72749105196
-
Phosphorylation of the Pseudomonas syringae effector AvrPto is required for FLS2/BAK1-independent virulence activity and recognition by tobacco
-
Yeam I., et al. Phosphorylation of the Pseudomonas syringae effector AvrPto is required for FLS2/BAK1-independent virulence activity and recognition by tobacco. Plant J. 2010, 61:16-24.
-
(2010)
Plant J.
, vol.61
, pp. 16-24
-
-
Yeam, I.1
-
31
-
-
0032750816
-
Overexpression of Pto activates defense responses and confers broad resistance
-
Tang X., et al. Overexpression of Pto activates defense responses and confers broad resistance. Plant Cell 1999, 11:15-30.
-
(1999)
Plant Cell
, vol.11
, pp. 15-30
-
-
Tang, X.1
-
32
-
-
57749111993
-
From guard to decoy: a new model for perception of plant pathogen effectors
-
van der Hoorn R.A.L., Kamoun S. From guard to decoy: a new model for perception of plant pathogen effectors. Plant Cell 2008, 20:2009-2017.
-
(2008)
Plant Cell
, vol.20
, pp. 2009-2017
-
-
van der Hoorn, R.A.L.1
Kamoun, S.2
-
33
-
-
42049121663
-
Plant pathogenic bacterial type III effectors subdue host responses
-
Zhou J.-M., Chai J. Plant pathogenic bacterial type III effectors subdue host responses. Curr. Opin. Microbiol. 2008, 11:179-185.
-
(2008)
Curr. Opin. Microbiol.
, vol.11
, pp. 179-185
-
-
Zhou, J.-M.1
Chai, J.2
-
34
-
-
34548606963
-
The structural basis for activation of plant immunity by bacterial effector protein AvrPto
-
Xing W., et al. The structural basis for activation of plant immunity by bacterial effector protein AvrPto. Nature 2007, 449:243-247.
-
(2007)
Nature
, vol.449
, pp. 243-247
-
-
Xing, W.1
-
35
-
-
3142534455
-
The solution structure of type III effector protein AvrPto reveals conformational and dynamic features important for plant pathogenesis
-
Wulf J., et al. The solution structure of type III effector protein AvrPto reveals conformational and dynamic features important for plant pathogenesis. Structure 2004, 12:1257-1268.
-
(2004)
Structure
, vol.12
, pp. 1257-1268
-
-
Wulf, J.1
-
36
-
-
0034487337
-
The Pseudomonas AvrPto protein is differentially recognized by tomato and tobacco and is localized to the plant plasma membrane
-
Shan L., et al. The Pseudomonas AvrPto protein is differentially recognized by tomato and tobacco and is localized to the plant plasma membrane. Plant Cell 2000, 12:2323-2338.
-
(2000)
Plant Cell
, vol.12
, pp. 2323-2338
-
-
Shan, L.1
-
37
-
-
0033564813
-
Constitutively active Pto induces a Prf-dependent hypersensitive response in the absence of AvrPto
-
Rathjen J.P., et al. Constitutively active Pto induces a Prf-dependent hypersensitive response in the absence of AvrPto. EMBO J. 1999, 18:3232-3240.
-
(1999)
EMBO J.
, vol.18
, pp. 3232-3240
-
-
Rathjen, J.P.1
-
38
-
-
0242556837
-
Cytosolic HSP90 associates with and modulates the Arabidopsis RPM1 disease resistance protein
-
Hubert D.A., et al. Cytosolic HSP90 associates with and modulates the Arabidopsis RPM1 disease resistance protein. EMBO J. 2003, 22:5679-5689.
-
(2003)
EMBO J.
, vol.22
, pp. 5679-5689
-
-
Hubert, D.A.1
-
39
-
-
0037086347
-
Regulatory role of SGT1 in early R gene-mediated plant defenses
-
Austin M.J., et al. Regulatory role of SGT1 in early R gene-mediated plant defenses. Science 2002, 295:2077-2080.
-
(2002)
Science
, vol.295
, pp. 2077-2080
-
-
Austin, M.J.1
-
40
-
-
0036679001
-
Ubiquitin ligase-associated protein SGT1 is required for host and nonhost disease resistance in plants
-
Peart J.R., et al. Ubiquitin ligase-associated protein SGT1 is required for host and nonhost disease resistance in plants. Proc. Natl. Acad. Sci. U. S. A. 2002, 99:10865-10869.
-
(2002)
Proc. Natl. Acad. Sci. U. S. A.
, vol.99
, pp. 10865-10869
-
-
Peart, J.R.1
-
41
-
-
0242641582
-
High throughput virus-induced gene silencing implicates heat shock protein 90 in plant disease resistance
-
Lu R., et al. High throughput virus-induced gene silencing implicates heat shock protein 90 in plant disease resistance. EMBO J. 2003, 22:5690-5699.
-
(2003)
EMBO J.
, vol.22
, pp. 5690-5699
-
-
Lu, R.1
-
42
-
-
54349122449
-
Structural and functional coupling of Hsp90- and Sgt1-centred multi-protein complexes
-
Zhang M., et al. Structural and functional coupling of Hsp90- and Sgt1-centred multi-protein complexes. EMBO J. 2008, 27:2789-2798.
-
(2008)
EMBO J.
, vol.27
, pp. 2789-2798
-
-
Zhang, M.1
-
43
-
-
0037086007
-
The RAR1 interactor SGT1, an essential component of R gene-triggered disease resistance
-
Azevedo C., et al. The RAR1 interactor SGT1, an essential component of R gene-triggered disease resistance. Science 2002, 295:2073-2076.
-
(2002)
Science
, vol.295
, pp. 2073-2076
-
-
Azevedo, C.1
-
44
-
-
77950962425
-
NLR sensors meet at the SGT1-HSP90 crossroad
-
Kadota Y., et al. NLR sensors meet at the SGT1-HSP90 crossroad. Trends Biochem. Sci. 2010, 35:199-207.
-
(2010)
Trends Biochem. Sci.
, vol.35
, pp. 199-207
-
-
Kadota, Y.1
-
45
-
-
0035895284
-
Essential role of the small GTPase Rac in disease resistance of rice
-
Ono E., et al. Essential role of the small GTPase Rac in disease resistance of rice. Proc. Natl. Acad. Sci. U. S. A. 2001, 98:759-764.
-
(2001)
Proc. Natl. Acad. Sci. U. S. A.
, vol.98
, pp. 759-764
-
-
Ono, E.1
-
46
-
-
0037108109
-
Current molecular models for NADPH oxidase regulation by Rac GTPase
-
Bokoch G.M., Diebold B.A. Current molecular models for NADPH oxidase regulation by Rac GTPase. Blood 2002, 100:2692-2696.
-
(2002)
Blood
, vol.100
, pp. 2692-2696
-
-
Bokoch, G.M.1
Diebold, B.A.2
-
47
-
-
39149121438
-
Regulation of rice NADPH oxidase by binding of Rac GTPase to its N-terminal extension
-
Wong H.L., et al. Regulation of rice NADPH oxidase by binding of Rac GTPase to its N-terminal extension. Plant Cell 2007, 19:4022-4034.
-
(2007)
Plant Cell
, vol.19
, pp. 4022-4034
-
-
Wong, H.L.1
-
48
-
-
77955288861
-
Activation of a Rac GTPase by the NLR family disease resistance protein Pit plays a critical role in rice innate immunity
-
Kawano Y., et al. Activation of a Rac GTPase by the NLR family disease resistance protein Pit plays a critical role in rice innate immunity. Cell Host Microbe 2010, 7:362-375.
-
(2010)
Cell Host Microbe
, vol.7
, pp. 362-375
-
-
Kawano, Y.1
-
49
-
-
39149113748
-
RAR1 and HSP90 form a complex with Rac/Rop GTPase and function in innate-immune responses in rice
-
Thao N.P., et al. RAR1 and HSP90 form a complex with Rac/Rop GTPase and function in innate-immune responses in rice. Plant Cell 2007, 19:4035-4045.
-
(2007)
Plant Cell
, vol.19
, pp. 4035-4045
-
-
Thao, N.P.1
-
50
-
-
38049005962
-
CRT1, an Arabidopsis ATPase that interacts with diverse resistance proteins and modulates disease resistance to turnip crinkle virus
-
Kang H.-G., et al. CRT1, an Arabidopsis ATPase that interacts with diverse resistance proteins and modulates disease resistance to turnip crinkle virus. Cell Host Microbe 2008, 3:48-57.
-
(2008)
Cell Host Microbe
, vol.3
, pp. 48-57
-
-
Kang, H.-G.1
-
51
-
-
77953189367
-
Endosome-associated CRT1 functions early in resistance gene-mediated defense signaling in Arabidopsis and tobacco
-
Kang H.-G., et al. Endosome-associated CRT1 functions early in resistance gene-mediated defense signaling in Arabidopsis and tobacco. Plant Cell 2010, 22:918-936.
-
(2010)
Plant Cell
, vol.22
, pp. 918-936
-
-
Kang, H.-G.1
-
52
-
-
77951991788
-
Identification of tomato phosphatidylinositol-specific phospholipase-C (PI-PLC) family members and the role of PLC4 and PLC6 in HR and disease resistance
-
Vossen J.H., et al. Identification of tomato phosphatidylinositol-specific phospholipase-C (PI-PLC) family members and the role of PLC4 and PLC6 in HR and disease resistance. Plant J. 2010, 62:224-239.
-
(2010)
Plant J.
, vol.62
, pp. 224-239
-
-
Vossen, J.H.1
-
53
-
-
0036017860
-
Phospholipid signalling in plant defence
-
Laxalt A.M., Munnik T. Phospholipid signalling in plant defence. Curr. Opin. Plant Biol. 2002, 5:332-338.
-
(2002)
Curr. Opin. Plant Biol.
, vol.5
, pp. 332-338
-
-
Laxalt, A.M.1
Munnik, T.2
-
54
-
-
33845968857
-
The Arabidopsis protein kinase PTI1-2 is activated by convergent phosphatidic acid and oxidative stress signaling pathways downstream of PDK1 and OXI1
-
Anthony R.G., et al. The Arabidopsis protein kinase PTI1-2 is activated by convergent phosphatidic acid and oxidative stress signaling pathways downstream of PDK1 and OXI1. J. Biol. Chem. 2006, 281:37536-37546.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 37536-37546
-
-
Anthony, R.G.1
-
55
-
-
30444436882
-
Adi3 is a Pdk1-interacting AGC kinase that negatively regulates plant cell death
-
Devarenne T.P., et al. Adi3 is a Pdk1-interacting AGC kinase that negatively regulates plant cell death. EMBO J. 2006, 25:255-265.
-
(2006)
EMBO J.
, vol.25
, pp. 255-265
-
-
Devarenne, T.P.1
-
56
-
-
77952943763
-
The T-loop extension of the tomato protein kinase AvrPto-dependent Pto-interacting protein 3 (Adi3) directs nuclear localization for suppression of plant cell death
-
Ek-Ramos M.J., et al. The T-loop extension of the tomato protein kinase AvrPto-dependent Pto-interacting protein 3 (Adi3) directs nuclear localization for suppression of plant cell death. J. Biol. Chem. 2010, 285:17584-17594.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 17584-17594
-
-
Ek-Ramos, M.J.1
-
57
-
-
34848815700
-
The grateful dead: calcium and cell death in plant innate immunity
-
Ma W., Berkowitz G.A. The grateful dead: calcium and cell death in plant innate immunity. Cell Microbiol. 2007, 9:2571-2585.
-
(2007)
Cell Microbiol.
, vol.9
, pp. 2571-2585
-
-
Ma, W.1
Berkowitz, G.A.2
-
58
-
-
77952478526
-
Mitogen-activated protein kinase signaling in plants
-
Rodriguez M.C.S., et al. Mitogen-activated protein kinase signaling in plants. Annu. Rev. Plant Biol. 2010, 61:621-649.
-
(2010)
Annu. Rev. Plant Biol.
, vol.61
, pp. 621-649
-
-
Rodriguez, M.C.S.1
-
59
-
-
78149433187
-
Tomato MAPKKKe{open} is a positive regulator of cell-death signaling networks associated with plant immunity
-
Melech-Bonfil S., Sessa G. Tomato MAPKKKe{open} is a positive regulator of cell-death signaling networks associated with plant immunity. Plant J. 2010, 64:379-391.
-
(2010)
Plant J.
, vol.64
, pp. 379-391
-
-
Melech-Bonfil, S.1
Sessa, G.2
-
60
-
-
4143088379
-
MAPKKKα is a positive regulator of cell death associated with both plant immunity and disease
-
del Pozo O., et al. MAPKKKα is a positive regulator of cell death associated with both plant immunity and disease. EMBO J. 2004, 23:3072-3082.
-
(2004)
EMBO J.
, vol.23
, pp. 3072-3082
-
-
del Pozo, O.1
-
61
-
-
0036696447
-
NPK1, a MEKK1-like mitogen-activated protein kinase kinase kinase, regulates innate immunity and development in plants
-
Jin H., et al. NPK1, a MEKK1-like mitogen-activated protein kinase kinase kinase, regulates innate immunity and development in plants. Dev. Cell 2002, 3:291-297.
-
(2002)
Dev. Cell
, vol.3
, pp. 291-297
-
-
Jin, H.1
-
62
-
-
34447542796
-
A bacterial E3 ubiquitin ligase targets a host protein kinase to disrupt plant immunity
-
Rosebrock T.R., et al. A bacterial E3 ubiquitin ligase targets a host protein kinase to disrupt plant immunity. Nature 2007, 448:370-374.
-
(2007)
Nature
, vol.448
, pp. 370-374
-
-
Rosebrock, T.R.1
-
63
-
-
77950344193
-
Tomato 14-3-3 protein 7 (TFT7) positively regulates immunity-associated programmed cell death by enhancing protein abundance and signaling ability of MAPKKKα
-
Oh C.-S., et al. Tomato 14-3-3 protein 7 (TFT7) positively regulates immunity-associated programmed cell death by enhancing protein abundance and signaling ability of MAPKKKα. Plant Cell 2010, 22:260-272.
-
(2010)
Plant Cell
, vol.22
, pp. 260-272
-
-
Oh, C.-S.1
-
64
-
-
0035895298
-
Activation of a mitogen-activated protein kinase pathway is involved in disease resistance in tobacco
-
Yang K.Y., et al. Activation of a mitogen-activated protein kinase pathway is involved in disease resistance in tobacco. Proc. Natl. Acad. Sci. U. S. A. 2001, 98:741-746.
-
(2001)
Proc. Natl. Acad. Sci. U. S. A.
, vol.98
, pp. 741-746
-
-
Yang, K.Y.1
-
65
-
-
34548503443
-
Chloroplast-generated reactive oxygen species are involved in hypersensitive response-like cell death mediated by a mitogen-activated protein kinase cascade
-
Liu Y., et al. Chloroplast-generated reactive oxygen species are involved in hypersensitive response-like cell death mediated by a mitogen-activated protein kinase cascade. Plant J. 2007, 51:941-954.
-
(2007)
Plant J.
, vol.51
, pp. 941-954
-
-
Liu, Y.1
-
66
-
-
0035969499
-
Isochorismate synthase is required to synthesize salicylic acid for plant defence
-
Wildermuth M.C., et al. Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature 2001, 414:562-565.
-
(2001)
Nature
, vol.414
, pp. 562-565
-
-
Wildermuth, M.C.1
-
67
-
-
0030938488
-
The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats
-
Cao H., et al. The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 1997, 88:57-63.
-
(1997)
Cell
, vol.88
, pp. 57-63
-
-
Cao, H.1
-
68
-
-
0038826955
-
Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes
-
Mou Z., et al. Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 2003, 113:935-944.
-
(2003)
Cell
, vol.113
, pp. 935-944
-
-
Mou, Z.1
-
69
-
-
49649112131
-
Plant immunity requires conformational charges of NPR1 via S-nitrosylation and thioredoxins
-
Tada Y., et al. Plant immunity requires conformational charges of NPR1 via S-nitrosylation and thioredoxins. Science 2008, 321:952-956.
-
(2008)
Science
, vol.321
, pp. 952-956
-
-
Tada, Y.1
-
70
-
-
0035983849
-
In vivo interaction between NPR1 and transcription factor TGA2 leads to salicylic acid-mediated gene activation in Arabidopsis
-
Fan W., Dong X. In vivo interaction between NPR1 and transcription factor TGA2 leads to salicylic acid-mediated gene activation in Arabidopsis. Plant Cell 2002, 14:1377-1389.
-
(2002)
Plant Cell
, vol.14
, pp. 1377-1389
-
-
Fan, W.1
Dong, X.2
-
71
-
-
73249127808
-
The BTB/POZ domain of the Arabidopsis disease resistance protein NPR1 interacts with the repression domain of TGA2 to negate its function
-
Boyle P., et al. The BTB/POZ domain of the Arabidopsis disease resistance protein NPR1 interacts with the repression domain of TGA2 to negate its function. Plant Cell 2009, 21:3700-3713.
-
(2009)
Plant Cell
, vol.21
, pp. 3700-3713
-
-
Boyle, P.1
-
72
-
-
0027490089
-
Purification and characterization of a soluble salicylic acid-binding protein from tobacco
-
Chen Z., et al. Purification and characterization of a soluble salicylic acid-binding protein from tobacco. Proc. Natl. Acad. Sci. U. S. A. 1993, 90:9533-9537.
-
(1993)
Proc. Natl. Acad. Sci. U. S. A.
, vol.90
, pp. 9533-9537
-
-
Chen, Z.1
-
73
-
-
0028848403
-
Inhibition of ascorbate peroxidase by salicylic acid and 2,6-dichloroisonicotinic acid, two inducers of plant defense responses
-
Durner J., Klessig D.F. Inhibition of ascorbate peroxidase by salicylic acid and 2,6-dichloroisonicotinic acid, two inducers of plant defense responses. Proc. Natl. Acad. Sci. U. S. A. 1995, 92:11312-11316.
-
(1995)
Proc. Natl. Acad. Sci. U. S. A.
, vol.92
, pp. 11312-11316
-
-
Durner, J.1
Klessig, D.F.2
-
74
-
-
0029582877
-
Evidence against specific binding of salicylic acid to plant catalase
-
Ruffer M., et al. Evidence against specific binding of salicylic acid to plant catalase. FEBS Lett. 1995, 377:175-180.
-
(1995)
FEBS Lett.
, vol.377
, pp. 175-180
-
-
Ruffer, M.1
-
75
-
-
0347364622
-
High-affinity salicylic acid-binding protein 2 is required for plant innate immunity and has salicylic acid-stimulated lipase activity
-
Kumar D., Klessig D.F. High-affinity salicylic acid-binding protein 2 is required for plant innate immunity and has salicylic acid-stimulated lipase activity. Proc. Natl. Acad. Sci. U. S. A. 2003, 100:16101-16106.
-
(2003)
Proc. Natl. Acad. Sci. U. S. A.
, vol.100
, pp. 16101-16106
-
-
Kumar, D.1
Klessig, D.F.2
-
76
-
-
0037015036
-
The tobacco salicylic acid-binding protein 3 (SABP3) is the chloroplast carbonic anhydrase, which exhibits antioxidant activity and plays a role in the hypersensitive defense response
-
Slaymaker D.H., et al. The tobacco salicylic acid-binding protein 3 (SABP3) is the chloroplast carbonic anhydrase, which exhibits antioxidant activity and plays a role in the hypersensitive defense response. Proc. Natl. Acad. Sci. U. S. A. 2002, 99:11640-11645.
-
(2002)
Proc. Natl. Acad. Sci. U. S. A.
, vol.99
, pp. 11640-11645
-
-
Slaymaker, D.H.1
-
77
-
-
33846066027
-
Aconitase plays a role in regulating resistance to oxidative stress and cell death in Arabidopsis and Nicotiana benthamiana
-
Moeder W., et al. Aconitase plays a role in regulating resistance to oxidative stress and cell death in Arabidopsis and Nicotiana benthamiana. Plant Mol. Biol. 2006, 63:273-287.
-
(2006)
Plant Mol. Biol.
, vol.63
, pp. 273-287
-
-
Moeder, W.1
-
78
-
-
0032129686
-
SA, JA, ethylene, and disease resistance in plants
-
Dong X. SA, JA, ethylene, and disease resistance in plants. Curr. Opin. Plant Biol. 1998, 1:316-323.
-
(1998)
Curr. Opin. Plant Biol.
, vol.1
, pp. 316-323
-
-
Dong, X.1
-
79
-
-
0001699831
-
Biosynthesis of jasmonic acid by several plant species
-
Vick B.A., Zimmerman D.C. Biosynthesis of jasmonic acid by several plant species. Plant Physiol. 1984, 75:458-461.
-
(1984)
Plant Physiol.
, vol.75
, pp. 458-461
-
-
Vick, B.A.1
Zimmerman, D.C.2
-
80
-
-
0032524404
-
COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility
-
Xie D.X., et al. COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 1998, 280:1091-1094.
-
(1998)
Science
, vol.280
, pp. 1091-1094
-
-
Xie, D.X.1
-
81
-
-
0345393097
-
Virulence systems of Pseudomonas syringae pv. tomato promote bacterial speck disease in tomato by targeting the jasmonate signaling pathway
-
Zhao Y., et al. Virulence systems of Pseudomonas syringae pv. tomato promote bacterial speck disease in tomato by targeting the jasmonate signaling pathway. Plant J. 2003, 36:485-499.
-
(2003)
Plant J.
, vol.36
, pp. 485-499
-
-
Zhao, Y.1
-
82
-
-
18644369120
-
Induction of protein secretory pathway is required for systemic acquired resistance
-
Wang D., et al. Induction of protein secretory pathway is required for systemic acquired resistance. Science 2005, 308:1036-1040.
-
(2005)
Science
, vol.308
, pp. 1036-1040
-
-
Wang, D.1
-
83
-
-
0242667917
-
SNARE-protein-mediated disease resistance at the plant cell wall
-
Collins N.C., et al. SNARE-protein-mediated disease resistance at the plant cell wall. Nature 2003, 425:973-977.
-
(2003)
Nature
, vol.425
, pp. 973-977
-
-
Collins, N.C.1
-
84
-
-
34547425745
-
The syntaxin SYP132 contributes to plant resistance against bacteria and secretion of pathogenesis-related protein 1
-
Kalde M., et al. The syntaxin SYP132 contributes to plant resistance against bacteria and secretion of pathogenesis-related protein 1. Proc. Natl. Acad. Sci. U. S. A. 2007, 104:11850-11855.
-
(2007)
Proc. Natl. Acad. Sci. U. S. A.
, vol.104
, pp. 11850-11855
-
-
Kalde, M.1
-
85
-
-
33646888187
-
CDNA-AFLP combined with functional analysis reveals novel genes involved in the hypersensitive response
-
Gabriels S.H.E.J., et al. cDNA-AFLP combined with functional analysis reveals novel genes involved in the hypersensitive response. Mol. Plant-Microbe Interact. 2006, 19:567-576.
-
(2006)
Mol. Plant-Microbe Interact.
, vol.19
, pp. 567-576
-
-
Gabriels, S.H.E.J.1
-
86
-
-
33947711794
-
An NB-LRR protein required for HR signalling mediated by both extra- and intracellular resistance proteins
-
Gabriels S.H.E.J., et al. An NB-LRR protein required for HR signalling mediated by both extra- and intracellular resistance proteins. Plant J. 2007, 50:14-28.
-
(2007)
Plant J.
, vol.50
, pp. 14-28
-
-
Gabriels, S.H.E.J.1
-
87
-
-
35748984121
-
Rice Pti1a negatively regulates RAR1-dependent defense responses
-
Takahashi A., et al. Rice Pti1a negatively regulates RAR1-dependent defense responses. Plant Cell 2007, 19:2940-2951.
-
(2007)
Plant Cell
, vol.19
, pp. 2940-2951
-
-
Takahashi, A.1
-
88
-
-
0030973457
-
The Pto kinase conferring resistance to tomato bacterial speck disease interacts with proteins that bind a cis-element of pathogenesis-related genes
-
Zhou J., et al. The Pto kinase conferring resistance to tomato bacterial speck disease interacts with proteins that bind a cis-element of pathogenesis-related genes. EMBO J. 1997, 16:3207-3218.
-
(1997)
EMBO J.
, vol.16
, pp. 3207-3218
-
-
Zhou, J.1
-
89
-
-
0035999378
-
Tomato transcription factors Pti4, Pti5, and Pti6 activate defense responses when expressed in Arabidopsis
-
Gu Y.-Q., et al. Tomato transcription factors Pti4, Pti5, and Pti6 activate defense responses when expressed in Arabidopsis. Plant Cell 2002, 14:817-831.
-
(2002)
Plant Cell
, vol.14
, pp. 817-831
-
-
Gu, Y.-Q.1
-
90
-
-
33745479207
-
The U-box protein CMPG1 is required for efficient activation of defense mechanisms triggered by multiple resistance genes in tobacco and tomato
-
Gonzalez-Lamothe R., et al. The U-box protein CMPG1 is required for efficient activation of defense mechanisms triggered by multiple resistance genes in tobacco and tomato. Plant Cell 2006, 18:1067-1083.
-
(2006)
Plant Cell
, vol.18
, pp. 1067-1083
-
-
Gonzalez-Lamothe, R.1
-
91
-
-
77953097908
-
Phytophthora infestans effector AVR3a is essential for virulence and manipulates plant immunity by stabilizing host E3 ligase CMPG1
-
Bos J.I.B., et al. Phytophthora infestans effector AVR3a is essential for virulence and manipulates plant immunity by stabilizing host E3 ligase CMPG1. Proc. Natl. Acad. Sci. U. S. A. 2010, 107:9909-9914.
-
(2010)
Proc. Natl. Acad. Sci. U. S. A.
, vol.107
, pp. 9909-9914
-
-
Bos, J.I.B.1
-
92
-
-
0036006189
-
An EDS1 orthologue is required for N-mediated resistance against tobacco mosaic virus
-
Peart J.R., et al. An EDS1 orthologue is required for N-mediated resistance against tobacco mosaic virus. Plant J. 2002, 29:569-579.
-
(2002)
Plant J.
, vol.29
, pp. 569-579
-
-
Peart, J.R.1
-
93
-
-
34250807791
-
A Pseudomonas syringae pv. tomato DC3000 mutant lacking the type III effector HopQ1-1 is able to cause disease in the model plant Nicotiana benthamiana
-
Wei C.F., et al. A Pseudomonas syringae pv. tomato DC3000 mutant lacking the type III effector HopQ1-1 is able to cause disease in the model plant Nicotiana benthamiana. Plant J. 2007, 51:32-46.
-
(2007)
Plant J.
, vol.51
, pp. 32-46
-
-
Wei, C.F.1
|