메뉴 건너뛰기




Volumn 14, Issue 2, 2008, Pages 179-195

Partial least squares Cox regression for genome-wide data

Author keywords

Cox regression; Dimension reduction; Gene expression data; High dimensional data; Partial least squares; Survival prediction

Indexed keywords

ARTICLE; BREAST TUMOR; COMPARATIVE STUDY; COMPUTER SIMULATION; DNA MICROARRAY; FEMALE; GENE EXPRESSION PROFILING; GENETICS; GENOMICS; HUMAN; METHODOLOGY; PROPORTIONAL HAZARDS MODEL; REGRESSION ANALYSIS; SURVIVAL;

EID: 42449139466     PISSN: 13807870     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10985-007-9076-7     Document Type: Article
Times cited : (29)

References (17)
  • 1
    • 19344375744 scopus 로고    scopus 로고
    • Semi-supervised methods to predict patient survival from gene expression data
    • Bair E and Tibshirani R (2004). Semi-supervised methods to predict patient survival from gene expression data. PLoS Biol 2: 511-522
    • (2004) PLoS Biol , vol.2 , pp. 511-522
    • Bair, E.1    Tibshirani, R.2
  • 4
    • 34247259498 scopus 로고    scopus 로고
    • Predicting patient survival from microarray data by accelrated failure time modeling using partial least squares and lasso
    • Datta S, Le-Rademacher J and Datta S (2007). Predicting patient survival from microarray data by accelrated failure time modeling using partial least squares and lasso. Biometrics 63: 259-271
    • (2007) Biometrics , vol.63 , pp. 259-271
    • Datta, S.1    Le-Rademacher, J.2    Datta, S.3
  • 5
    • 12744266814 scopus 로고    scopus 로고
    • Partial Cox regression analysis for high-dimensional gene expression data
    • Li H and Gui J (2004). Partial Cox regression analysis for high-dimensional gene expression data. Bioinformatics 20: i208-i215
    • (2004) Bioinformatics , vol.20
    • Li, H.1    Gui, J.2
  • 7
    • 84946280337 scopus 로고
    • On the structure of partial least squares regression
    • Helland IS (1988). On the structure of partial least squares regression. Commun Stat Simulat Comput 17: 581-607
    • (1988) Commun Stat Simulat Comput , vol.17 , pp. 581-607
    • Helland, I.S.1
  • 8
    • 0003340781 scopus 로고
    • An extension of Cox's regression model
    • Johansen S (1983). An extension of Cox's regression model. Int Stat Rev 51: 165-174
    • (1983) Int Stat Rev , vol.51 , pp. 165-174
    • Johansen, S.1
  • 10
    • 0242718698 scopus 로고    scopus 로고
    • Iteratively reweighted partial least squares estimation for generalized linear regression
    • Marx BD (1996). Iteratively reweighted partial least squares estimation for generalized linear regression. Technometrics 38: 374-381
    • (1996) Technometrics , vol.38 , pp. 374-381
    • Marx, B.D.1
  • 12
    • 0036956225 scopus 로고    scopus 로고
    • Partial least squares proportional hazard regression for application to DNA microarray survival data
    • Nguyen DV and Rocke DM (2002). Partial least squares proportional hazard regression for application to DNA microarray survival data. Bioinformatics 18: 1625-1632
    • (2002) Bioinformatics , vol.18 , pp. 1625-1632
    • Nguyen, D.V.1    Rocke, D.M.2
  • 13
    • 0242634343 scopus 로고    scopus 로고
    • Linking gene expression data with patient survival times using partial least squares
    • Suppl. 1
    • Park PJ, Tian L and Kohane IS (2002). Linking gene expression data with patient survival times using partial least squares. Bioinformatics 18(Suppl. 1): S120-S127
    • (2002) Bioinformatics , vol.18
    • Park, P.J.1    Tian, L.2    Kohane, I.S.3
  • 16
    • 0027765563 scopus 로고
    • Cross-validation in survival analysis
    • Verweij PJM and van Houwelingen HC (1993). Cross-validation in survival analysis. Stat Med 12: 2305-2314
    • (1993) Stat Med , vol.12 , pp. 2305-2314
    • Verweij, P.J.M.1    Van Houwelingen, H.C.2
  • 17
    • 0000320904 scopus 로고
    • Fitting Cox's regression model to survival data using GLIM
    • Whitehead J (1980). Fitting Cox's regression model to survival data using GLIM. Appl Stat 29: 268-275
    • (1980) Appl Stat , vol.29 , pp. 268-275
    • Whitehead, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.