-
1
-
-
0035826271
-
Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans
-
DOI 10.1038/35065638
-
Tissenbaum HA, Guarente L. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 2001;410:227-30. (Pubitemid 32216597)
-
(2001)
Nature
, vol.410
, Issue.6825
, pp. 227-230
-
-
Tissenbaum, H.A.1
Guarente, L.2
-
2
-
-
0033214237
-
The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms
-
DOI 10.1101/gad.13.19.2570
-
Kaeberlein M, McVey M, Guarente L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 1999;13:2570-80. (Pubitemid 29489648)
-
(1999)
Genes and Development
, vol.13
, Issue.19
, pp. 2570-2580
-
-
Kaeberlein, M.1
McVey, M.2
Guarente, L.3
-
3
-
-
3943054839
-
The Sir2 family of protein deacetylases
-
DOI 10.1146/annurev.biochem.73.011303.073651
-
Blander G, Guarente L. The Sir2 family of protein deacetylases. Annu Rev Biochem 2004;73:417-35. (Pubitemid 39050375)
-
(2004)
Annual Review of Biochemistry
, vol.73
, pp. 417-435
-
-
Blander, G.1
Guarente, L.2
-
4
-
-
57349169258
-
Comparing and contrasting the roles of AMPK and SIRT1 in metabolic tissues
-
Fulco M, Sartorelli V. Comparing and contrasting the roles of AMPK and SIRT1 in metabolic tissues. Cell Cycle 2008;7:3669-79.
-
(2008)
Cell Cycle
, vol.7
, pp. 3669-3679
-
-
Fulco, M.1
Sartorelli, V.2
-
5
-
-
34548857700
-
SIRT1 Improves Insulin Sensitivity under Insulin-Resistant Conditions by Repressing PTP1B
-
DOI 10.1016/j.cmet.2007.08.014, PII S1550413107002598
-
Sun C, Zhang F, Ge X, et al. SIRT1 improves insulin sensitivity under insulin-resistant conditions by repressing PTP1B. Cell Metab 2007;6:307-19. (Pubitemid 47468091)
-
(2007)
Cell Metabolism
, vol.6
, Issue.4
, pp. 307-319
-
-
Sun, C.1
Zhang, F.2
Ge, X.3
Yan, T.4
Chen, X.5
Shi, X.6
Zhai, Q.7
-
6
-
-
33751072349
-
Resveratrol improves health and survival of mice on a high-calorie diet
-
Baur JA, Pearson KJ, Price NL, et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature 2006;444:337-42.
-
(2006)
Nature
, vol.444
, pp. 337-342
-
-
Baur, J.A.1
Pearson, K.J.2
Price, N.L.3
-
7
-
-
33845399894
-
Resveratrol Improves Mitochondrial Function and Protects against Metabolic Disease by Activating SIRT1 and PGC-1α
-
DOI 10.1016/j.cell.2006.11.013, PII S0092867406014280
-
Lagouge M, Argmann C, Gerhart-Hines Z, et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1 α. Cell 2006;127:1109-22. (Pubitemid 44894520)
-
(2006)
Cell
, vol.127
, Issue.6
, pp. 1109-1122
-
-
Lagouge, M.1
Argmann, C.2
Gerhart-Hines, Z.3
Meziane, H.4
Lerin, C.5
Daussin, F.6
Messadeq, N.7
Milne, J.8
Lambert, P.9
Elliott, P.10
Geny, B.11
Laakso, M.12
Puigserver, P.13
Auwerx, J.14
-
8
-
-
14544282413
-
Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1
-
DOI 10.1038/nature03354
-
Rodgers JT, Lerin C, Haas W, et al. Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1. Nature 2005;434:113-8. (Pubitemid 40349395)
-
(2005)
Nature
, vol.434
, Issue.7029
, pp. 113-118
-
-
Rodgers, J.T.1
Lerin, C.2
Haas, W.3
Gygi, S.P.4
Spiegelman, B.M.5
Puigserver, P.6
-
9
-
-
34247259630
-
Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1α
-
DOI 10.1038/sj.emboj.7601633, PII 7601633
-
Gerhart-Hines Z, Rodgers JT, Bare O, et al. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1 α. EMBO J 2007;26:1913-23. (Pubitemid 46624046)
-
(2007)
EMBO Journal
, vol.26
, Issue.7
, pp. 1913-1923
-
-
Gerhart-Hines, Z.1
Rodgers, J.T.2
Bare, O.3
Lerin, C.4
Kim, S.-H.5
Mostoslavsky, R.6
Alt, F.W.7
Wu, Z.8
Puigserver, P.9
-
10
-
-
0034870748
-
Energy-sensing and signaling by AMP-activated protein kinase in skeletal muscle
-
Winder WW. Energy-sensing and signaling by AMP-activated protein kinase in skeletal muscle. J Appl Physiol 2002;91:1017-28.
-
(2002)
J Appl Physiol
, vol.91
, pp. 1017-1028
-
-
Winder, W.W.1
-
11
-
-
0029925785
-
Characterization of AMP-activated protein kinase β and γ subunits. Assembly of the heterotrimeric complex in vitro
-
Woods A, Cheung PC, Smith FC, et al. Characterization of AMP-activated protein kinase β and γ subunits. Assembly of the heterotrimeric complex in vitro. J Biol Chem 1996;26:10282-90.
-
(1996)
J Biol Chem
, vol.26
, pp. 10282-10290
-
-
Woods, A.1
Cheung, P.C.2
Smith, F.C.3
-
12
-
-
0037799908
-
AMPK β subunit targets metabolic stress sensing to glycogen
-
DOI 10.1016/S0960-9822(03)00292-6
-
Polekhina G, Gupta A, Michell BJ, et al. AMPK β subunit targets metabolic stress sensing to glycogen. Curr Biol 2003;13:867-71. (Pubitemid 36573256)
-
(2003)
Current Biology
, vol.13
, Issue.10
, pp. 867-871
-
-
Polekhina, G.1
Gupta, A.2
Michell, B.J.3
Van, D.B.4
Murthy, S.5
Feil, S.C.6
Jennings, I.G.7
Campbell, D.J.8
Witters, L.A.9
Parker, M.W.10
Kemp, B.E.11
Stapleton, D.12
-
13
-
-
0346102907
-
1 subunit AMP allosteric regulatory site
-
DOI 10.1110/ps.03340004
-
Adams J, Chen ZP, Van Denderen BJ, et al. Intrasteric control of AMPK via the gamma1 subunit AMP allosteric regulatory site. Protein Sci 2004;13:155-65. (Pubitemid 38021150)
-
(2004)
Protein Science
, vol.13
, Issue.1
, pp. 155-165
-
-
Adams, J.1
Chen, Z.-P.2
Van, D.B.J.W.3
Morton, C.J.4
Parker, M.W.5
Witters, L.A.6
Stapleton, D.7
Kemp, B.E.8
-
14
-
-
0034141355
-
The regulation of AMP-activated protein kinase by phosphorylation
-
DOI 10.1042/0264-6021:3450437
-
Stein SC, Woods A, Jones NA, et al. The regulation of AMP-activated protein kinase by phosphorylation. Biochem J 2000;345:437-43. (Pubitemid 30099070)
-
(2000)
Biochemical Journal
, vol.345
, Issue.3
, pp. 437-443
-
-
Stein, S.C.1
Woods, A.2
Jones, N.A.3
Davison, M.D.4
Cabling, D.5
-
15
-
-
20044370885
-
Deficiency of LKB1 in skeletal muscle prevents AMPK activation and glucose uptake during contraction
-
DOI 10.1038/sj.emboj.7600667
-
Sakamoto K, McCarthy A, Smith D, et al. Deficiency of LKB1 in skeletal muscle prevents AMPK activation and glucose uptake during contraction. EMBO J 2005;24:1810-20. (Pubitemid 40769500)
-
(2005)
EMBO Journal
, vol.24
, Issue.10
, pp. 1810-1820
-
-
Sakamoto, K.1
McCarthy, A.2
Smith, D.3
Green, K.A.4
Hardie, D.G.5
Ashworth, A.6
Alessi, D.R.7
-
16
-
-
0000368683
-
Exercise induces isoform-specific increase in 5' AMP-activated protein kinase activity in human skeletal muscle
-
DOI 10.1006/bbrc.2000.3073
-
Fujii N, Hayashi T, Hirshman MF, et al. Exercise induces isoform-specific increase in 5′AMP-activated protein kinase activity in human skeletal muscle. Biochem Biophys Res Commun 2000;273:1150-5. (Pubitemid 30481094)
-
(2000)
Biochemical and Biophysical Research Communications
, vol.273
, Issue.3
, pp. 1150-1155
-
-
Fujii, N.1
Hayashi, T.2
Hirshman, M.F.3
Smith, J.T.4
Habinowski, S.A.5
Kaijser, L.6
Mu, J.7
Ljungqvist, O.8
Birnbaum, M.J.9
Witters, L.A.10
Thorell, A.11
Goodyear, L.J.12
-
17
-
-
0037122766
-
Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase
-
DOI 10.1038/415339a
-
Minokoshi Y, Kim YB, Peroni OD, et al. Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature 2002;415:339-43. (Pubitemid 34087557)
-
(2002)
Nature
, vol.415
, Issue.6869
, pp. 339-343
-
-
Minokoshi, Y.1
Kim, Y.-B.2
Peroni, O.D.3
Fryer, L.G.D.4
Muller, C.5
Carling, D.6
Kahn, B.B.7
-
18
-
-
0036851817
-
Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase
-
DOI 10.1038/nm788
-
Yamauchi T, Kamon J, Minokoshi Y, et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 2002;8:1288-95. (Pubitemid 35373562)
-
(2002)
Nature Medicine
, vol.8
, Issue.11
, pp. 1288-1295
-
-
Yamauchi, T.1
Kamon, J.2
Minokoshi, Y.3
Ito, Y.4
Waki, H.5
Uchida, S.6
Yamashita, S.7
Noda, M.8
Kita, S.9
Ueki, K.10
Eto, K.11
Akanuma, Y.12
Froguel, P.13
Foufelle, F.14
Ferre, P.15
Carling, D.16
Kimura, S.17
Nagai, R.18
Kahn, B.B.19
Kadowaki, T.20
more..
-
19
-
-
0034773404
-
Role of AMP-activated protein kinase in mechanism of metformin action
-
DOI 10.1172/JCI200113505
-
Zhou G, Myers R, Li Y, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 2001;108:1167-74. (Pubitemid 32995375)
-
(2001)
Journal of Clinical Investigation
, vol.108
, Issue.8
, pp. 1167-1174
-
-
Zhou, G.1
Myers, R.2
Li, Y.3
Chen, Y.4
Shen, X.5
Fenyk-Melody, J.6
Wu, M.7
Ventre, J.8
Doebber, T.9
Fujii, N.10
Musi, N.11
Hirshman, M.F.12
Goodyear, L.J.13
Moller, D.E.14
-
20
-
-
33845411854
-
Metformin increases the PGC-1α protein and oxidative enzyme activities possibly via AMPK phosphorylation in skeletal muscle in vivo
-
DOI 10.1152/japplphysiol.00255.2006
-
Suwa M, Egashira T, Nakano H, et al. Metformin increases the PGC-1α protein and oxidative enzyme activities possibly via AMPK phosphorylation in skeletal muscle in vivo. J Appl Physiol 2006;101:1685-92. (Pubitemid 44904490)
-
(2006)
Journal of Applied Physiology
, vol.101
, Issue.6
, pp. 1685-1692
-
-
Suwa, M.1
Egashira, T.2
Nakano, H.3
Sasaki, H.4
Kumagai, S.5
-
21
-
-
0031425839
-
AICA riboside increases AMP-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle
-
Merrill GF, Kurth EJ, Hardie DG, et al. AICA riboside increases AMP-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle. Am J Physiol Endocrinol Metab 1997;273:E1107-12.
-
(1997)
Am J Physiol Endocrinol Metab
, vol.273
-
-
Merrill, G.F.1
Kurth, E.J.2
Hardie, D.G.3
-
22
-
-
0037379283
-
Effects of AICAR and exercise on insulin-stimulated glucose uptake, signaling, and GLUT-4 content in rat muscles
-
Jessen N, Pold R, Buhl ES, et al. Effects of AICAR and exercise on insulin-stimulated glucose uptake, signaling, and GLUT-4 content in rat muscles. J Appl Physiol 2003;94:1373-9. (Pubitemid 36348812)
-
(2003)
Journal of Applied Physiology
, vol.94
, Issue.4
, pp. 1373-1379
-
-
Jessen, N.1
Pold, R.2
Buhl, E.S.3
Jensen, L.S.4
Schmitz, O.5
Lund, S.6
-
23
-
-
0042423598
-
Effects of chronic AICAR treatment on fiber composition, enzyme activity, UCP3, and PGC-1 in rat muscles
-
Suwa M, Nakano H, Kumagai S. Effects of chronic AICAR treatment on fiber composition, enzyme activity, UCP3, and PGC-1 in rat muscles. J Appl Physiol 2003;95:960-8. (Pubitemid 37033988)
-
(2003)
Journal of Applied Physiology
, vol.95
, Issue.3
, pp. 960-968
-
-
Suwa, M.1
Nakano, H.2
Kumagai, S.3
-
24
-
-
0033949848
-
Activation of AMP-activated protein kinase increases mitochondrial enzymes in skeletal muscle
-
Winder WW, Holmes BF, Rubink DS, et al. Activation of AMP-activated protein kinase increases mitochondrial enzymes in skeletal muscle. J Appl Physiol 2000;88:2219-26. (Pubitemid 30453931)
-
(2000)
Journal of Applied Physiology
, vol.88
, Issue.6
, pp. 2219-2226
-
-
Winder, W.W.1
Holmes, B.F.2
Rubink, D.S.3
Jensen, E.B.4
Chen, M.5
Holloszy, J.O.6
-
25
-
-
21144446106
-
PGC-1α deficiency causes multi-system energy metabolic derangements: Muscle dysfunction, abnormal weight control and hepatic steatosis
-
Leone TC, Lehman JJ, Finck BN, et al. PGC-1α deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS Biol 2005;3:e101.
-
(2005)
PLoS Biol
, vol.3
-
-
Leone, T.C.1
Lehman, J.J.2
Finck, B.N.3
-
26
-
-
0037102256
-
Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres
-
Lin J, Wu H, Tarr PT, et al. Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres. Nature 2002;418:797-801.
-
(2002)
Nature
, vol.418
, pp. 797-801
-
-
Lin, J.1
Wu, H.2
Tarr, P.T.3
-
27
-
-
55549096745
-
SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1. Possible role in AMP-activated protein kinase activation
-
Lan F, Cacicedo JM, Ruderman N, et al. SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1. Possible role in AMP-activated protein kinase activation. J Biol Chem 2008;283:27628-35.
-
(2008)
J Biol Chem
, vol.283
, pp. 27628-27635
-
-
Lan, F.1
Cacicedo, J.M.2
Ruderman, N.3
-
28
-
-
43049121395
-
Glucose Restriction Inhibits Skeletal Myoblast Differentiation by Activating SIRT1 through AMPK-Mediated Regulation of Nampt
-
DOI 10.1016/j.devcel.2008.02.004, PII S1534580708000749
-
Fulco M, Cen Y, Zhao P, et al. Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt. Dev Cell 2008;14:661-73. (Pubitemid 351622608)
-
(2008)
Developmental Cell
, vol.14
, Issue.5
, pp. 661-673
-
-
Fulco, M.1
Cen, Y.2
Zhao, P.3
Hoffman, E.P.4
McBurney, M.W.5
Sauve, A.A.6
Sartorelli, V.7
-
29
-
-
44949188628
-
Endurance exercise increases the SIRT1 and peroxisome proliferator-activated receptor γ coactivator-1α protein expressions in rat skeletal muscle
-
DOI 10.1016/j.metabol.2008.02.017, PII S0026049508000887
-
Suwa M, Nakano H, Radak Z, et al. Endurance exercise increases the SIRT1 and peroxisome proliferator-activated receptor γ coactivator-1α protein expressions in rat skeletal muscle. Metabolism 2008;57:986-98. (Pubitemid 351814692)
-
(2008)
Metabolism: Clinical and Experimental
, vol.57
, Issue.7
, pp. 986-998
-
-
Suwa, M.1
Nakano, H.2
Radak, Z.3
Kumagai, S.4
-
30
-
-
39449118273
-
Exercise training promotes SIRT1 activity in aged rats
-
DOI 10.1089/rej.2007.0576
-
Ferrara N, Rinaldi B, Corbi G, et al. Exercise training promotes SIRT1 activity in aged rats. Rejuvenation Res 2008;11:139-50. (Pubitemid 351271626)
-
(2008)
Rejuvenation Research
, vol.11
, Issue.1
, pp. 139-150
-
-
Ferrara, N.1
Rinaldi, B.2
Corbi, G.3
Conti, V.4
Stiuso, P.5
Boccuti, S.6
Rengo, G.7
Rossi, F.8
Filippelli, A.9
-
31
-
-
0000107989
-
Muscle plasticity: Energy demand and supply processes
-
Rowell L, Sheperd J, editors. Bethesda, MD: Am Physiol Soc
-
Booth FW, Baldwin KM. Muscle plasticity: energy demand and supply processes. In: Rowell L, Sheperd J, editors. Handbook of physiology. Exercise: regulation and integration of multiple systems. Bethesda, MD: Am Physiol Soc; 1996. p. 1075-123.
-
(1996)
Handbook of Physiology. Exercise: Regulation and Integration of Multiple Systems
, pp. 1075-1123
-
-
Booth, F.W.1
Baldwin, K.M.2
-
32
-
-
57849131142
-
Concurrent regulation of AMP-activated protein kinase and SIRT1 in mammalian cells
-
Suchankova G, Nelson LE, Gerhart-Hines Z, et al. Concurrent regulation of AMP-activated protein kinase and SIRT1 in mammalian cells. Biochem Biophys Res Commun 2009;378:836-41.
-
(2009)
Biochem Biophys Res Commun
, vol.378
, pp. 836-841
-
-
Suchankova, G.1
Nelson, L.E.2
Gerhart-Hines, Z.3
-
33
-
-
33846012164
-
Role of AMPKα2 in basal, training-, and AICAR-induced GLUT4, hexokinase II, and mitochondrial protein expression in mouse muscle
-
DOI 10.1152/ajpendo.00243.2006
-
Jørgensen SB, Treebak JT, Viollet B, et al. Role of AMPKα2 in basal, training-, and AICAR-induced GLUT4, hexokinase II, and mitochondrial protein expression in mouse muscle. Am J Physiol Endocrinol Metab 2007;292:E331-E339. (Pubitemid 46052958)
-
(2007)
American Journal of Physiology - Endocrinology and Metabolism
, vol.292
, Issue.1
-
-
Jorgensen, S.B.1
Treebak, J.T.2
Viollet, B.3
Schjerling, P.4
Vaulont, S.5
Wojtaszewski, J.F.P.6
Richter, E.A.7
-
34
-
-
57049097476
-
AMPK-independent pathways regulate skeletal muscle fatty acid oxidation
-
Dzamko N, Schertzer JD, Ryall JG, et al. AMPK-independent pathways regulate skeletal muscle fatty acid oxidation. J Physiol 2008;586:5819-31.
-
(2008)
J Physiol
, vol.586
, pp. 5819-5831
-
-
Dzamko, N.1
Schertzer, J.D.2
Ryall, J.G.3
-
36
-
-
0033664017
-
Activation of glucose transport by AMP-activated protein kinase via stimulation of nitric oxide synthase
-
Fryer LG, Hajduch E, Rencurel F, et al. Activation of glucose transport by AMP-activated protein kinase via stimulation of nitric oxide synthase. Diabetes 2000;49:1978-85.
-
(2000)
Diabetes
, vol.49
, pp. 1978-1985
-
-
Fryer, L.G.1
Hajduch, E.2
Rencurel, F.3
-
37
-
-
33644747421
-
Activation of the AMP-activated kinase by antidiabetes drug metformin stimulates nitric oxide synthesis in vivo by promoting the association of heat shock protein 90 and endothelial nitric oxide synthase
-
DOI 10.2337/diabetes.55.02.06.db05-1064
-
Davis BJ, Xie Z, Viollet B, et al. Activation of the AMP-activated kinase by antidiabetes drug metformin stimulates nitric oxide synthesis in vivo by promoting the association of heat shock protein 90 and endothelial nitric oxide synthase. Diabetes 2006;55:496-505. (Pubitemid 43343281)
-
(2006)
Diabetes
, vol.55
, Issue.2
, pp. 496-505
-
-
Davis, B.J.1
Xie, Z.2
Viollet, B.3
Zou, M.-H.4
-
38
-
-
51649106480
-
Cilostazol inhibits oxidative stress-induced premature senescence via upregulation of Sirt1 in human endothelial cells
-
Ota H, Eto M, Kano MR, et al. Cilostazol inhibits oxidative stress-induced premature senescence via upregulation of Sirt1 in human endothelial cells. Arterioscler Thromb Vasc Biol 2008;28:1634-9.
-
(2008)
Arterioscler Thromb Vasc Biol
, vol.28
, pp. 1634-1639
-
-
Ota, H.1
Eto, M.2
Kano, M.R.3
-
39
-
-
26844558334
-
Cell biology: Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS
-
DOI 10.1126/science.1117728
-
Nisoli E, Tonello C, Cardile A, et al. Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science 2005;310:314-7. (Pubitemid 41457197)
-
(2005)
Science
, vol.310
, Issue.5746
, pp. 314-317
-
-
Nisoli, E.1
Tonello, C.2
Cardile, A.3
Cozzi, V.4
Bracale, R.5
Tedesco, L.6
Falcone, S.7
Valerio, A.8
Cantoni, O.9
Clementi, E.10
Moncada, S.11
Carruba, M.O.12
-
40
-
-
0035140193
-
Nitric oxide increases glucose uptake through a mechanism that is distinct from the insulin and contraction pathways in rat skeletal muscle
-
Higaki Y, Hirshman MF, Fujii N, et al. Nitric oxide increases glucose uptake through a mechanism that is distinct from the insulin and contraction pathways in rat skeletal muscle. Diabetes 2001;50:241-7. (Pubitemid 32127278)
-
(2001)
Diabetes
, vol.50
, Issue.2
, pp. 241-247
-
-
Higaki, Y.1
Hirshman, M.F.2
Fujii, N.3
Goodyear, L.J.4
-
41
-
-
3843052559
-
5′-aminoimidazole-4-carboxyamide-ribonucleoside-activated glucose transport is not prevented by nitric oxide synthase inhibition in rat isolated skeletal muscle
-
DOI 10.1111/j.1440-1681.2004.04014.x
-
Stephens TJ, Canny BJ, Snow RJ, et al. 5′-Aminoimidazole-4- carboxyamide-ribonucleoside-activated glucose transport is not prevented by nitric oxide synthase inhibition in rat isolated skeletal muscle. Clin Exp Pharmacol Physiol 2004;31:419-23. (Pubitemid 39044120)
-
(2004)
Clinical and Experimental Pharmacology and Physiology
, vol.31
, Issue.7
, pp. 419-423
-
-
Stephens, T.J.1
Canny, B.J.2
Snow, R.J.3
McConell, G.K.4
-
42
-
-
0030024488
-
Composition and size of type I, IIA, IID/X, and IIB fibers and citrate synthase activity of rat muscle
-
Delp MD, Duan C. Composition and size of type I, IIA, IID/X, and IIB fibers and citrate synthase activity of rat muscle. J Appl Physiol 1996;80:261-70. (Pubitemid 26034871)
-
(1996)
Journal of Applied Physiology
, vol.80
, Issue.1
, pp. 261-270
-
-
Delp, M.D.1
Duan, C.2
-
43
-
-
0942265675
-
Expression profiling of the γ-subunit isoforms of AMP-activated protein kinase suggests a major role for γ3 in white skeletal muscle
-
Mahlapuu M, Johansson C, Lindgren K, et al. Expression profiling of the γ-subunit isoforms of AMP-activated protein kinase suggests a major role for γ3 in white skeletal muscle. Am J Physiol Endocrinol Metab 2004;286:E194-E200. (Pubitemid 38140309)
-
(2004)
American Journal of Physiology - Endocrinology and Metabolism
, vol.286
, Issue.2
-
-
Mahlapuu, M.1
Johansson, C.2
Lindgren, K.3
Hjalm, G.4
Barnes, B.R.5
Krook, A.6
Zierath, J.R.7
Andersson, L.8
Marklund, S.9
-
44
-
-
34547610976
-
Skeletal muscle adaptation to exercise training: AMP-activated protein kinase mediates muscle fiber type shift
-
DOI 10.2337/db07-0255
-
Röckl KS, Hirshman MF, Brandauer J, et al. Skeletal muscle adaptation to exercise training: AMP-activated protein kinase mediates muscle fiber type shift. Diabetes 2007;56:2062-9. (Pubitemid 47195818)
-
(2007)
Diabetes
, vol.56
, Issue.8
, pp. 2062-2069
-
-
Rockl, K.S.C.1
Hirshman, M.F.2
Brandauer, J.3
Fujii, N.4
Witters, L.A.5
Goodyear, L.J.6
-
45
-
-
0035947235
-
A role for AMP-activated protein kinase in contraction- And hypoxia-regulated glucose transport in skeletal muscle
-
DOI 10.1016/S1097-2765(01)00251-9
-
Mu J, Brozinick Jr JT, Valladares O, et al. A role for AMP-activated protein kinase in contraction- and hypoxia-regulated glucose transport in skeletal muscle. Mol Cell 2001;7:1085-94. (Pubitemid 32525754)
-
(2001)
Molecular Cell
, vol.7
, Issue.5
, pp. 1085-1094
-
-
Mu, J.1
Brozinick Jr., J.T.2
Valladares, O.3
Bucan, M.4
Birnbaum, M.J.5
-
46
-
-
58149099037
-
Gain-of-function R225Q mutation in AMP-activated protein kinase γ3 subunit increases mitochondrial biogenesis in glycolytic skeletal muscle
-
Garcia-Roves PM, Osler ME, Holmström MH, et al. Gain-of-function R225Q mutation in AMP-activated protein kinase γ3 subunit increases mitochondrial biogenesis in glycolytic skeletal muscle. J Biol Chem 2008;283:35724-34.
-
(2008)
J Biol Chem
, vol.283
, pp. 35724-35734
-
-
Garcia-Roves, P.M.1
Osler, M.E.2
Holmström, M.H.3
-
47
-
-
65249102660
-
SIRT1 is not associated with oxidative capacity in rat heart and skeletal muscle and its overexpression reduces mitochondrial biogenesis
-
Gurd B, Yoshida Y, Lally J, et al. SIRT1 is not associated with oxidative capacity in rat heart and skeletal muscle and its overexpression reduces mitochondrial biogenesis. J Physiol 2009;587:1817-28.
-
(2009)
J Physiol
, vol.587
, pp. 1817-1828
-
-
Gurd, B.1
Yoshida, Y.2
Lally, J.3
-
49
-
-
27544434763
-
Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses
-
DOI 10.1016/j.cell.2005.08.011, PII S0092867405008159
-
Chen WY, Wang DH, Yen RC, et al. Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses. Cell 2005;123:437-48. (Pubitemid 41546674)
-
(2005)
Cell
, vol.123
, Issue.3
, pp. 437-448
-
-
Wen, Y.C.1
Wang, D.H.2
RayWhay, C.Y.3
Luo, J.4
Gu, W.5
Baylin, S.B.6
-
50
-
-
33748200050
-
Interactions between E2F1 and SirT1 regulate apoptotic response to DNA damage
-
DOI 10.1038/ncb1468, PII NCB1468
-
Wang C, Chen L, Hou X, et al. Interactions between E2F1 and SirT1 regulate apoptotic response to DNA damage. Nat Cell Biol 2006;8:1025-31. (Pubitemid 44314735)
-
(2006)
Nature Cell Biology
, vol.8
, Issue.9
, pp. 1025-1031
-
-
Wang, C.1
Chen, L.2
Hou, X.3
Li, Z.4
Kabra, N.5
Ma, Y.6
Nemoto, S.7
Finkel, T.8
Gu, W.9
Cress, W.D.10
Chen, J.11
-
51
-
-
33748467452
-
Acute exercise and GLUT4 expression in human skeletal muscle: Influence of exercise intensity
-
DOI 10.1152/japplphysiol.01489.2005
-
Kraniou GN, Cameron-Smith D, Hargreaves M. Acute exercise and GLUT4 expression in human skeletal muscle: influence of exercise intensity. J Appl Physiol 2006;101:934-7. (Pubitemid 44352310)
-
(2006)
Journal of Applied Physiology
, vol.101
, Issue.3
, pp. 934-937
-
-
Kraniou, G.N.1
Cameron-Smith, D.2
Hargreaves, M.3
-
52
-
-
0028278938
-
Rat skeletal muscle hexokinase II mRNA and activity are increased by a single bout of acute exercise
-
O'Doherty RM, Bracy DP, Osawa H, et al. Rat skeletal muscle hexokinase II mRNA and activity are increased by a single bout of acute exercise. Am J Physiol Endocrinol Metab 1994;266:E171-E178.
-
(1994)
Am J Physiol Endocrinol Metab
, vol.266
-
-
O'Doherty, R.M.1
Bracy, D.P.2
Osawa, H.3
-
53
-
-
55449106960
-
Rapid exercise-induced changes in PGC-1α mRNA and protein in human skeletal muscle
-
Mathai AS, Bonen A, Benton CR, et al. Rapid exercise-induced changes in PGC-1α mRNA and protein in human skeletal muscle. J Appl Physiol 2008;105:1098-105.
-
(2008)
J Appl Physiol
, vol.105
, pp. 1098-1105
-
-
Mathai, A.S.1
Bonen, A.2
Benton, C.R.3
-
54
-
-
0030035972
-
Identification and characterization of basal and cyclic AMP response elements in the promoter of the rat hexokinase II gene
-
DOI 10.1074/jbc.271.29.17296
-
Osawa H, Robey RB, Printz RL, et al. Identification and characterization of basal and cyclic AMP response elements in the promoter of the rat hexokinase II gene. J Biol Chem 1996;271:17296-303. (Pubitemid 26244288)
-
(1996)
Journal of Biological Chemistry
, vol.271
, Issue.29
, pp. 17296-17303
-
-
Osawa, H.1
Robey, R.B.2
Printz, R.L.3
Granner, D.K.4
-
55
-
-
38949119766
-
AMP-activated protein kinase phosphorylates transcription factors of the CREB family
-
DOI 10.1152/japplphysiol.00900.2007
-
Thomson DM, Herway ST, Fillmore N, et al. AMP-activated protein kinase phosphorylates transcription factors of the CREB family. J Appl Physiol 2008;104:429-38. (Pubitemid 351231489)
-
(2008)
Journal of Applied Physiology
, vol.104
, Issue.2
, pp. 429-438
-
-
Thomson, D.M.1
Herway, S.T.2
Fillmore, N.3
Kim, H.4
Brown, J.D.5
Barrow, J.R.6
Winder, W.W.7
-
56
-
-
0035855905
-
CREB regulates hepatic gluconeogenesis through the coactivator PGC-1
-
DOI 10.1038/35093131
-
Herzig S, Long F, Jhala US, et al. CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature 2001;413:179-83. (Pubitemid 32867880)
-
(2001)
Nature
, vol.413
, Issue.6852
, pp. 179-183
-
-
Herzig, S.1
Long, F.2
Jhala, U.S.3
Hedrick, S.4
Quinn, R.5
Bauer, A.6
Rudolph, D.7
Schutz, G.8
Yoon, C.9
Puigserver, P.10
Spiegelman, B.11
Montminy, M.12
-
57
-
-
0034604547
-
Identification of a 30-base pair regulatory element and novel DNA binding protein that regulates the human GLUT4 promoter in transgenic mice
-
DOI 10.1074/jbc.M001452200
-
Oshel KM, Knight JB, Cao KT, et al. Identification of a 30-base pair regulatory element and novel DNA binding protein that regulates the human GLUT4 promoter in transgenic mice. J Biol Chem 2000;275:23666-73. (Pubitemid 30624651)
-
(2000)
Journal of Biological Chemistry
, vol.275
, Issue.31
, pp. 23666-23673
-
-
Oshel, K.M.1
Knight, J.B.2
Cao, K.T.3
Thai, M.V.4
Olson, A.L.5
-
58
-
-
0032486267
-
Myocyte enhancer factor 2 (MEF2)-binding site is required for GLUT4 gene expression in transgenic mice: Regulation of MEF2 DNA binding activity in insulin-deficient diabetes
-
DOI 10.1074/jbc.273.23.14285
-
Thai MV, Guruswamy S, Cao KT, et al. Myocyte enhancer factor 2 (MEF2)-binding site is required for GLUT4 gene expression in transgenic mice. Regulation of MEF2 DNA binding activity in insulin-deficient diabetes. J Biol Chem 1998;273:14285-92. (Pubitemid 28319143)
-
(1998)
Journal of Biological Chemistry
, vol.273
, Issue.23
, pp. 14285-14292
-
-
Thai, M.V.1
Guruswamy, S.2
Cao, K.T.3
Pessin, J.E.4
Olson, A.L.5
-
59
-
-
33644695373
-
Regulation of muscle GLUT4 enhancer factor and myocyte enhancer factor 2 by AMP-activated protein kinase
-
Holmes BF, Sparling DP, Olson AL, et al. Regulation of muscle GLUT4 enhancer factor and myocyte enhancer factor 2 by AMP-activated protein kinase. Am J Physiol Endocrinol Metab 2005;289:E1071-6.
-
(2005)
Am J Physiol Endocrinol Metab
, vol.289
-
-
Holmes, B.F.1
Sparling, D.P.2
Olson, A.L.3
-
60
-
-
33244486764
-
Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic β cells
-
Bordone L, Motta MC, Picard F, et al. Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic β cells. PLoS Biol 2006;4:e31.
-
(2006)
PLoS Biol
, vol.4
-
-
Bordone, L.1
Motta, M.C.2
Picard, F.3
-
61
-
-
34347338702
-
Adiponectin secretion is regulated by SIRT1 and the endoplasmic reticulum oxidoreductase Ero1-Lα
-
DOI 10.1128/MCB.02279-06
-
Qiang L, Wang H, Farmer SR. Adiponectin secretion is regulated by SIRT1 and the endoplasmic reticulum oxidoreductase Ero1-L α. Mol Cell Biol 2007;27:4698-707. (Pubitemid 47016124)
-
(2007)
Molecular and Cellular Biology
, vol.27
, Issue.13
, pp. 4698-4707
-
-
Qiang, L.1
Wang, H.2
Farmer, S.R.3
-
62
-
-
34447308268
-
SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer's disease and amyotrophic lateral sclerosis
-
DOI 10.1038/sj.emboj.7601758, PII 7601758
-
Kim D, Nguyen MD, Dobbin MM, et al. SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer's disease and amyotrophic lateral sclerosis. EMBO J 2007;26:3169-79. (Pubitemid 47057498)
-
(2007)
EMBO Journal
, vol.26
, Issue.13
, pp. 3169-3179
-
-
Kim, D.1
Nguyen, M.D.2
Dobbin, M.M.3
Fischer, A.4
Sananbenesi, F.5
Rodgers, J.T.6
Delalle, I.7
Baur, J.A.8
Sui, G.9
Armour, S.M.10
Puigserver, P.11
Sinclair, D.A.12
Tsai, L.-H.13
|