-
1
-
-
0034832620
-
Outlier detection for high dimensional data
-
C. C. Aggarwal and P. S. Yu. Outlier detection for high dimensional data. In SIGMOD, pages 37-46, 2001.
-
(2001)
SIGMOD
, pp. 37-46
-
-
Aggarwal, C.C.1
Yu, P.S.2
-
2
-
-
0009011405
-
Detecting novel network intrusions using bayes estimators
-
April
-
D. Barbará, N. Wu, and S. Jajodia. Detecting novel network intrusions using bayes estimators. In SDM, April 2001.
-
(2001)
SDM
-
-
Barbará, D.1
Wu, N.2
Jajodia, S.3
-
5
-
-
33750306345
-
Detecting fraudulent personalities in networks of online auctioneers
-
Knowledge Discovery in Databases: PKDD 2006 - 10th European Conference on Principles and Practice of Knowledge Discovery in Databases, Proceedings
-
D. H. Chau, S. Pandit, and C. Faloutsos. Detecting fraudulent personalities in networks of online auctioneers. In PKDD, pages 103-114, 2006. (Pubitemid 44617716)
-
(2006)
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
, vol.LNAI
, pp. 103-114
-
-
Chau, D.H.1
Pandit, S.2
Faloutsos, C.3
-
7
-
-
0346586663
-
SMOTE: Synthetic minority over-sampling technique
-
N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. Smote: Synthetic minority over-sampling technique. J. Artif. Intell. Res. (JAIR), 16:321-357, 2002. (Pubitemid 43057176)
-
(2002)
Journal of Artificial Intelligence Research
, vol.16
, pp. 321-357
-
-
Chawla, N.V.1
Bowyer, K.W.2
Hall, L.O.3
Kegelmeyer, W.P.4
-
8
-
-
27144549260
-
Editorial: Special issue on learning from imbalanced data sets
-
N. V. Chawla, N. Japkowicz, and A. Kotcz. Editorial: special issue on learning from imbalanced data sets. SIGKDD Explor. Newsl., 6(1):1-6, 2004.
-
(2004)
SIGKDD Explor. Newsl.
, vol.6
, Issue.1
, pp. 1-6
-
-
Chawla, N.V.1
Japkowicz, N.2
Kotcz, A.3
-
9
-
-
9444297357
-
SMOTEBoost: Improving Prediction of the Minority Class in Boosting
-
Knowledge Discovery in Databases: PKDD 2003
-
N. V. Chawla, A. Lazarevic, L. O. Hall, and K. W. Bowyer. Smoteboost: Improving prediction of the minority class in boosting. In PKDD, pages 107-119, 2003. (Pubitemid 37231089)
-
(2003)
LECTURE NOTES IN COMPUTER SCIENCE
, Issue.2838
, pp. 107-119
-
-
Chawla, N.V.1
Lazarevic, A.2
Hall, L.O.3
Bowyer, K.W.4
-
10
-
-
67049119859
-
Start globally, optimize locally, predict globally: Improving performance on imbalanced data
-
D. A. Cieslak and N. V. Chawla. Start globally, optimize locally, predict globally: Improving performance on imbalanced data. In ICDM, pages 143-152, 2008.
-
(2008)
ICDM
, pp. 143-152
-
-
Cieslak, D.A.1
Chawla, N.V.2
-
11
-
-
56449108037
-
Hierarchical sampling for active learning
-
S. Dasgupta and D. Hsu. Hierarchical sampling for active learning. In ICML, pages 208-215, 2008.
-
(2008)
ICML
, pp. 208-215
-
-
Dasgupta, S.1
Hsu, D.2
-
12
-
-
56449092085
-
Efficient projections onto the l-ball for learning in high 1 dimensions
-
J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra. Efficient projections onto the l -ball for learning in high 1 dimensions. In ICML, pages 272-279, 2008.
-
(2008)
ICML
, pp. 272-279
-
-
Duchi, J.1
Shalev-Shwartz, S.2
Singer, Y.3
Chandra, T.4
-
13
-
-
70349253476
-
Distributed top-k outlier detection from astronomy catalogs using the demac system
-
H. Dutta, C. Giannella, K. D. Borne, and H. Kargupta. Distributed top-k outlier detection from astronomy catalogs using the demac system. In SDM, 2007.
-
(2007)
SDM
-
-
Dutta, H.1
Giannella, C.2
Borne, K.D.3
Kargupta, H.4
-
16
-
-
70350627210
-
Active and semi-supervised data domain description
-
N. Görnitz, M. Kloft, and U. Brefeld. Active and semi-supervised data domain description. In ECML/PKDD (1), pages 407-422, 2009.
-
(2009)
ECML/PKDD
, Issue.1
, pp. 407-422
-
-
Görnitz, N.1
Kloft, M.2
Brefeld, U.3
-
17
-
-
85043434217
-
Nearest-neighbor-based active learning for rare category detection
-
J. He and J. Carbonell. Nearest-neighbor-based active learning for rare category detection. In NIPS. 2007.
-
(2007)
NIPS
-
-
He, J.1
Carbonell, J.2
-
18
-
-
79951755612
-
An optimization model for outlier detection in categorical data
-
abs/cs/0503081
-
Z. He, X. Xu, and S. Deng. An optimization model for outlier detection in categorical data. CoRR, abs/cs/0503081, 2005.
-
(2005)
CoRR
-
-
He, Z.1
Xu, X.2
Deng, S.3
-
20
-
-
1942483137
-
Transductive inference for text classification using support vector machines
-
T. Joachims. Transductive inference for text classification using support vector machines. In ICML, pages 200-209, 1999.
-
(1999)
ICML
, pp. 200-209
-
-
Joachims, T.1
-
22
-
-
85161651554
-
Data mining for direct marketing: Problems and solutions
-
C. X. Ling and C. Li. Data mining for direct marketing: Problems and solutions. In KDD, pages 73-79, 1998.
-
(1998)
KDD
, pp. 73-79
-
-
Ling, C.X.1
Li, C.2
-
23
-
-
0345359208
-
Loci: Fast outlier detection using the local correlation integral
-
S. Papadimitriou, H. Kitagawa, P. B. Gibbons, and C. Faloutsos. Loci: Fast outlier detection using the local correlation integral. In ICDE, pages 315-327, 2003.
-
(2003)
ICDE
, pp. 315-327
-
-
Papadimitriou, S.1
Kitagawa, H.2
Gibbons, P.B.3
Faloutsos, C.4
-
24
-
-
35948994994
-
Active learning for anomaly and rare-category detection
-
D. Pelleg and A. W. Moore. Active learning for anomaly and rare-category detection. In NIPS. 2004.
-
(2004)
NIPS
-
-
Pelleg, D.1
Moore, W.A.2
-
25
-
-
0039845384
-
Efficient algorithms for mining outliers from large data sets
-
ACM
-
S. Ramaswamy, R. Rastogi, and K. Shim. Efficient algorithms for mining outliers from large data sets. In SIGMOD, pages 427-438. ACM, 2000.
-
(2000)
SIGMOD
, pp. 427-438
-
-
Ramaswamy, S.1
Rastogi, R.2
Shim, K.3
-
26
-
-
0000487102
-
Estimating the support of a high-dimensional distribution
-
DOI 10.1162/089976601750264965
-
B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson. Estimating the support of a high-dimensional distribution. Neural Computation, 13(7):1443-1471, 2001. (Pubitemid 33595028)
-
(2001)
Neural Computation
, vol.13
, Issue.7
, pp. 1443-1471
-
-
Scholkopf, B.1
Platt, J.C.2
Shawe-Taylor, J.3
Smola, A.J.4
Williamson, R.C.5
-
27
-
-
67049152595
-
Boosting for learning multiple classes with imbalanced class distribution
-
Y. Sun, M. S. Kamel, and Y. Wang. Boosting for learning multiple classes with imbalanced class distribution. In ICDM, pages 592-602, 2006.
-
(2006)
ICDM
, pp. 592-602
-
-
Sun, Y.1
Kamel, M.S.2
Wang, Y.3
-
28
-
-
70350623321
-
Category detection using hierarchical mean shift
-
P. Vatturi and W.-K. Wong. Category detection using hierarchical mean shift. In KDD, pages 847-856, 2009.
-
(2009)
KDD
, pp. 847-856
-
-
Vatturi, P.1
Wong, W.-K.2
-
29
-
-
36849083008
-
Local decomposition for rare class analysis
-
DOI 10.1145/1281192.1281279, KDD-2007: Proceedings of the Thirteenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
-
J. Wu, H. Xiong, P. Wu, and J. Chen. Local decomposition for rare class analysis. In KDD, pages 814-823, 2007. (Pubitemid 350229267)
-
(2007)
Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 814-823
-
-
Wu, J.1
Wu, P.2
Chen, J.3
Xiong, H.4
-
30
-
-
85132247975
-
Findout: Finding outliers in very large datasets
-
D. Yu, G. Sheikholeslami, and A. Zhang. Findout: finding outliers in very large datasets. Knowl. Inf. Syst., 4(4):387-412, 2002.
-
(2002)
Knowl. Inf. Syst.
, vol.4
, Issue.4
, pp. 387-412
-
-
Yu, D.1
Sheikholeslami, G.2
Zhang, A.3
-
31
-
-
11244293445
-
Ranking on data manifolds
-
D. Zhou, J. Weston, A. Gretton, O. Bousquet, and B. Schölkopf. Ranking on data manifolds. In NIPS, 2003.
-
(2003)
NIPS
-
-
Zhou, D.1
Weston, J.2
Gretton, A.3
Bousquet, O.4
Schölkopf, B.5
|