메뉴 건너뛰기




Volumn , Issue , 2010, Pages 226-235

Rare category characterization

Author keywords

Characterization; Compactness; Hyperball; Minority class; Optimization; Rare category; Subgradient

Indexed keywords

COMPACTNESS; HYPERBALL; MINORITY CLASS; RARE CATEGORY; SUBGRADIENT;

EID: 79951766273     PISSN: 15504786     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICDM.2010.154     Document Type: Conference Paper
Times cited : (34)

References (31)
  • 1
    • 0034832620 scopus 로고    scopus 로고
    • Outlier detection for high dimensional data
    • C. C. Aggarwal and P. S. Yu. Outlier detection for high dimensional data. In SIGMOD, pages 37-46, 2001.
    • (2001) SIGMOD , pp. 37-46
    • Aggarwal, C.C.1    Yu, P.S.2
  • 2
    • 0009011405 scopus 로고    scopus 로고
    • Detecting novel network intrusions using bayes estimators
    • April
    • D. Barbará, N. Wu, and S. Jajodia. Detecting novel network intrusions using bayes estimators. In SDM, April 2001.
    • (2001) SDM
    • Barbará, D.1    Wu, N.2    Jajodia, S.3
  • 8
    • 27144549260 scopus 로고    scopus 로고
    • Editorial: Special issue on learning from imbalanced data sets
    • N. V. Chawla, N. Japkowicz, and A. Kotcz. Editorial: special issue on learning from imbalanced data sets. SIGKDD Explor. Newsl., 6(1):1-6, 2004.
    • (2004) SIGKDD Explor. Newsl. , vol.6 , Issue.1 , pp. 1-6
    • Chawla, N.V.1    Japkowicz, N.2    Kotcz, A.3
  • 9
    • 9444297357 scopus 로고    scopus 로고
    • SMOTEBoost: Improving Prediction of the Minority Class in Boosting
    • Knowledge Discovery in Databases: PKDD 2003
    • N. V. Chawla, A. Lazarevic, L. O. Hall, and K. W. Bowyer. Smoteboost: Improving prediction of the minority class in boosting. In PKDD, pages 107-119, 2003. (Pubitemid 37231089)
    • (2003) LECTURE NOTES IN COMPUTER SCIENCE , Issue.2838 , pp. 107-119
    • Chawla, N.V.1    Lazarevic, A.2    Hall, L.O.3    Bowyer, K.W.4
  • 10
    • 67049119859 scopus 로고    scopus 로고
    • Start globally, optimize locally, predict globally: Improving performance on imbalanced data
    • D. A. Cieslak and N. V. Chawla. Start globally, optimize locally, predict globally: Improving performance on imbalanced data. In ICDM, pages 143-152, 2008.
    • (2008) ICDM , pp. 143-152
    • Cieslak, D.A.1    Chawla, N.V.2
  • 11
    • 56449108037 scopus 로고    scopus 로고
    • Hierarchical sampling for active learning
    • S. Dasgupta and D. Hsu. Hierarchical sampling for active learning. In ICML, pages 208-215, 2008.
    • (2008) ICML , pp. 208-215
    • Dasgupta, S.1    Hsu, D.2
  • 12
    • 56449092085 scopus 로고    scopus 로고
    • Efficient projections onto the l-ball for learning in high 1 dimensions
    • J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra. Efficient projections onto the l -ball for learning in high 1 dimensions. In ICML, pages 272-279, 2008.
    • (2008) ICML , pp. 272-279
    • Duchi, J.1    Shalev-Shwartz, S.2    Singer, Y.3    Chandra, T.4
  • 13
    • 70349253476 scopus 로고    scopus 로고
    • Distributed top-k outlier detection from astronomy catalogs using the demac system
    • H. Dutta, C. Giannella, K. D. Borne, and H. Kargupta. Distributed top-k outlier detection from astronomy catalogs using the demac system. In SDM, 2007.
    • (2007) SDM
    • Dutta, H.1    Giannella, C.2    Borne, K.D.3    Kargupta, H.4
  • 16
    • 70350627210 scopus 로고    scopus 로고
    • Active and semi-supervised data domain description
    • N. Görnitz, M. Kloft, and U. Brefeld. Active and semi-supervised data domain description. In ECML/PKDD (1), pages 407-422, 2009.
    • (2009) ECML/PKDD , Issue.1 , pp. 407-422
    • Görnitz, N.1    Kloft, M.2    Brefeld, U.3
  • 17
    • 85043434217 scopus 로고    scopus 로고
    • Nearest-neighbor-based active learning for rare category detection
    • J. He and J. Carbonell. Nearest-neighbor-based active learning for rare category detection. In NIPS. 2007.
    • (2007) NIPS
    • He, J.1    Carbonell, J.2
  • 18
    • 79951755612 scopus 로고    scopus 로고
    • An optimization model for outlier detection in categorical data
    • abs/cs/0503081
    • Z. He, X. Xu, and S. Deng. An optimization model for outlier detection in categorical data. CoRR, abs/cs/0503081, 2005.
    • (2005) CoRR
    • He, Z.1    Xu, X.2    Deng, S.3
  • 20
    • 1942483137 scopus 로고    scopus 로고
    • Transductive inference for text classification using support vector machines
    • T. Joachims. Transductive inference for text classification using support vector machines. In ICML, pages 200-209, 1999.
    • (1999) ICML , pp. 200-209
    • Joachims, T.1
  • 22
    • 85161651554 scopus 로고    scopus 로고
    • Data mining for direct marketing: Problems and solutions
    • C. X. Ling and C. Li. Data mining for direct marketing: Problems and solutions. In KDD, pages 73-79, 1998.
    • (1998) KDD , pp. 73-79
    • Ling, C.X.1    Li, C.2
  • 23
    • 0345359208 scopus 로고    scopus 로고
    • Loci: Fast outlier detection using the local correlation integral
    • S. Papadimitriou, H. Kitagawa, P. B. Gibbons, and C. Faloutsos. Loci: Fast outlier detection using the local correlation integral. In ICDE, pages 315-327, 2003.
    • (2003) ICDE , pp. 315-327
    • Papadimitriou, S.1    Kitagawa, H.2    Gibbons, P.B.3    Faloutsos, C.4
  • 24
    • 35948994994 scopus 로고    scopus 로고
    • Active learning for anomaly and rare-category detection
    • D. Pelleg and A. W. Moore. Active learning for anomaly and rare-category detection. In NIPS. 2004.
    • (2004) NIPS
    • Pelleg, D.1    Moore, W.A.2
  • 25
    • 0039845384 scopus 로고    scopus 로고
    • Efficient algorithms for mining outliers from large data sets
    • ACM
    • S. Ramaswamy, R. Rastogi, and K. Shim. Efficient algorithms for mining outliers from large data sets. In SIGMOD, pages 427-438. ACM, 2000.
    • (2000) SIGMOD , pp. 427-438
    • Ramaswamy, S.1    Rastogi, R.2    Shim, K.3
  • 26
    • 0000487102 scopus 로고    scopus 로고
    • Estimating the support of a high-dimensional distribution
    • DOI 10.1162/089976601750264965
    • B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson. Estimating the support of a high-dimensional distribution. Neural Computation, 13(7):1443-1471, 2001. (Pubitemid 33595028)
    • (2001) Neural Computation , vol.13 , Issue.7 , pp. 1443-1471
    • Scholkopf, B.1    Platt, J.C.2    Shawe-Taylor, J.3    Smola, A.J.4    Williamson, R.C.5
  • 27
    • 67049152595 scopus 로고    scopus 로고
    • Boosting for learning multiple classes with imbalanced class distribution
    • Y. Sun, M. S. Kamel, and Y. Wang. Boosting for learning multiple classes with imbalanced class distribution. In ICDM, pages 592-602, 2006.
    • (2006) ICDM , pp. 592-602
    • Sun, Y.1    Kamel, M.S.2    Wang, Y.3
  • 28
    • 70350623321 scopus 로고    scopus 로고
    • Category detection using hierarchical mean shift
    • P. Vatturi and W.-K. Wong. Category detection using hierarchical mean shift. In KDD, pages 847-856, 2009.
    • (2009) KDD , pp. 847-856
    • Vatturi, P.1    Wong, W.-K.2
  • 30
    • 85132247975 scopus 로고    scopus 로고
    • Findout: Finding outliers in very large datasets
    • D. Yu, G. Sheikholeslami, and A. Zhang. Findout: finding outliers in very large datasets. Knowl. Inf. Syst., 4(4):387-412, 2002.
    • (2002) Knowl. Inf. Syst. , vol.4 , Issue.4 , pp. 387-412
    • Yu, D.1    Sheikholeslami, G.2    Zhang, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.