-
1
-
-
36849052118
-
-
Bmr. In http://www.stat.rutgers.edu/madigan/BMR/.
-
Bmr. In http://www.stat.rutgers.edu/madigan/BMR/.
-
-
-
-
2
-
-
36849074446
-
-
C4.5. In http://www.rulequest.com/Personal/.
-
C4.5. In http://www.rulequest.com/Personal/.
-
-
-
-
3
-
-
36849037120
-
-
Kddcup. In http://www.acm.org/sigs/sigkdd/kddcup/index.php.
-
Kddcup. In http://www.acm.org/sigs/sigkdd/kddcup/index.php.
-
-
-
-
4
-
-
36849006698
-
-
Kddcup99data. In http://kdd.ics.uci.edu//databases/kddcup99/kddcup99. html.
-
Kddcup99data. In http://kdd.ics.uci.edu//databases/kddcup99/kddcup99. html.
-
-
-
-
5
-
-
36849060783
-
-
Libsvm. In www.csie.ntu.edu.tw/cjlin/libsvm/.
-
Libsvm. In www.csie.ntu.edu.tw/cjlin/libsvm/.
-
-
-
-
6
-
-
0346586663
-
Smote: Synthetic minority over-sampling technique
-
N. Chawla, K. Bowyer, L. Hall, and W. Kegelmeyer. Smote: Synthetic minority over-sampling technique. Journal of AI Research, 16:321-357, 2002.
-
(2002)
Journal of AI Research
, vol.16
, pp. 321-357
-
-
Chawla, N.1
Bowyer, K.2
Hall, L.3
Kegelmeyer, W.4
-
7
-
-
85149612939
-
Fast effective rule induction
-
W. Cohen. Fast effective rule induction. In ICML, pages 115-123, 1995.
-
(1995)
ICML
, pp. 115-123
-
-
Cohen, W.1
-
10
-
-
0344324689
-
Metacost: A general method for making classifiers cost-sensitive
-
P. Domingos. Metacost: a general method for making classifiers cost-sensitive. In KDD, pages 155-164, 1999.
-
(1999)
KDD
, pp. 155-164
-
-
Domingos, P.1
-
11
-
-
34547993162
-
C4.5, class imbalance, and cost sensitivity: Why under-sampling beats over-sampling
-
C. Drummond and R. Holte. C4.5, class imbalance, and cost sensitivity: Why under-sampling beats over-sampling. In ICML Workshop, 2003.
-
(2003)
ICML Workshop
-
-
Drummond, C.1
Holte, R.2
-
13
-
-
84867577175
-
The foundations of cost-sensitive learning
-
C. Elkan. The foundations of cost-sensitive learning. In IJCAI, pages 973-978, 2001.
-
(2001)
IJCAI
, pp. 973-978
-
-
Elkan, C.1
-
14
-
-
0013316935
-
Adacost: Misclassification cost-sensitive boosting
-
W. Fan, S. Stolfo, J. Zhang, and P. Chan. Adacost: misclassification cost-sensitive boosting. In ICML, pages 97-105, 1999.
-
(1999)
ICML
, pp. 97-105
-
-
Fan, W.1
Stolfo, S.2
Zhang, J.3
Chan, P.4
-
17
-
-
0034825778
-
Mining needle in a haystack: Classifying rare classes via two-phase rule induction
-
M. Joshi, R. Agarwal, and V. Kumar. Mining needle in a haystack: Classifying rare classes via two-phase rule induction. In SIGMOD, pages 91-102, 2001.
-
(2001)
SIGMOD
, pp. 91-102
-
-
Joshi, M.1
Agarwal, R.2
Kumar, V.3
-
18
-
-
0242625275
-
-
M. Joshi, R. Agarwal, and V. Kumar. Predicting rare classes: Can boosting make any weak learner strong? In KDD, 2002.
-
M. Joshi, R. Agarwal, and V. Kumar. Predicting rare classes: Can boosting make any weak learner strong? In KDD, 2002.
-
-
-
-
19
-
-
36849067159
-
-
G. Karypis. Cluto, software for clustering high-dimensional dataseis, version 2.1.1. In
-
G. Karypis. Cluto - software for clustering high-dimensional dataseis, version 2.1.1. In http://glaros.dtc.umn.edu/gkhome/views/cluto.
-
-
-
-
20
-
-
0031998121
-
Machine learning for the detection of oil spills in satellite radar imaages
-
M. Kubat, R. Holte, and S. Matwin. Machine learning for the detection of oil spills in satellite radar imaages. Machine Learning, 30:195-215, 1998.
-
(1998)
Machine Learning
, vol.30
, pp. 195-215
-
-
Kubat, M.1
Holte, R.2
Matwin, S.3
-
21
-
-
0001972236
-
Addressing the curse of unbalanced training sets: One-sided selection
-
M. Kubat and S. Matwin. Addressing the curse of unbalanced training sets: One-sided selection. In ICML, pages 179-186, 1997.
-
(1997)
ICML
, pp. 179-186
-
-
Kubat, M.1
Matwin, S.2
-
22
-
-
85161651554
-
Data mining for direct marketing: Problems and solutions
-
C. Ling and C. Li. Data mining for direct marketing: Problems and solutions. In KDD, pages 73-79, 1998.
-
(1998)
KDD
, pp. 73-79
-
-
Ling, C.1
Li, C.2
-
24
-
-
36849075937
-
Learning decision trees for loss minimization in multi-class problems
-
Oregon State University
-
D. Margineantu and T. Dietterich. Learning decision trees for loss minimization in multi-class problems. In TR 99-30-03. Oregon State University, 1999.
-
(1999)
TR 99-30-03
-
-
Margineantu, D.1
Dietterich, T.2
-
25
-
-
36849039189
-
-
P. Murphy and D. Aha. In UCI Repository of Machine Learning Databases. U. of California at Irvine, 1994.
-
P. Murphy and D. Aha. In UCI Repository of Machine Learning Databases. U. of California at Irvine, 1994.
-
-
-
-
27
-
-
84948481845
-
An algorithm for suffix stripping
-
July
-
M. F. Porter. An algorithm for suffix stripping. Program, 14(3): 130-137, July 1980.
-
(1980)
Program
, vol.14
, Issue.3
, pp. 130-137
-
-
Porter, M.F.1
-
28
-
-
0026120032
-
Small sample size effects in statistical pattern recognition: Recommendations for practitioners
-
S. Raudys and A. Jain. Small sample size effects in statistical pattern recognition: Recommendations for practitioners. TPAMI, 13(3):252-264, 1991.
-
(1991)
TPAMI
, vol.13
, Issue.3
, pp. 252-264
-
-
Raudys, S.1
Jain, A.2
-
31
-
-
36849020239
-
-
G. Weiss. Mining with rarity: a unifying framework. ACM SIGKDD Explorations, 6(1):7-19, 2004.
-
G. Weiss. Mining with rarity: a unifying framework. ACM SIGKDD Explorations, 6(1):7-19, 2004.
-
-
-
-
32
-
-
33749245586
-
Cost-sensitive learning by cost-proportionate example weighting
-
B. Zadrozny, J. Langford, and N. Abe. Cost-sensitive learning by cost-proportionate example weighting. In ICDM, pages 435-442, 2003.
-
(2003)
ICDM
, pp. 435-442
-
-
Zadrozny, B.1
Langford, J.2
Abe, N.3
-
33
-
-
36849038112
-
Investigation of artificial neural networks for classifying levels of financial distress of firms: The case of an unbalanced training sample
-
Kluwer
-
J. Zurada, B. Foster, and T. Ward. Investigation of artificial neural networks for classifying levels of financial distress of firms: The case of an unbalanced training sample. In Knowledge Discovery for Business Information Systems, pages 397-423. Kluwer, 2001.
-
(2001)
Knowledge Discovery for Business Information Systems
, pp. 397-423
-
-
Zurada, J.1
Foster, B.2
Ward, T.3
|