메뉴 건너뛰기




Volumn , Issue , 2007, Pages 814-823

Local decomposition for rare class analysis

Author keywords

K means clustering support vector machines; Local clustering; Rare class analysis

Indexed keywords

CLASSIFICATION (OF INFORMATION); DATA REDUCTION; LEARNING ALGORITHMS; PROBLEM SOLVING; SUPPORT VECTOR MACHINES;

EID: 36849083008     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1281192.1281279     Document Type: Conference Paper
Times cited : (61)

References (33)
  • 1
    • 36849052118 scopus 로고    scopus 로고
    • Bmr. In http://www.stat.rutgers.edu/madigan/BMR/.
    • Bmr. In http://www.stat.rutgers.edu/madigan/BMR/.
  • 2
    • 36849074446 scopus 로고    scopus 로고
    • C4.5. In http://www.rulequest.com/Personal/.
    • C4.5. In http://www.rulequest.com/Personal/.
  • 3
    • 36849037120 scopus 로고    scopus 로고
    • Kddcup. In http://www.acm.org/sigs/sigkdd/kddcup/index.php.
    • Kddcup. In http://www.acm.org/sigs/sigkdd/kddcup/index.php.
  • 4
    • 36849006698 scopus 로고    scopus 로고
    • Kddcup99data. In http://kdd.ics.uci.edu//databases/kddcup99/kddcup99. html.
    • Kddcup99data. In http://kdd.ics.uci.edu//databases/kddcup99/kddcup99. html.
  • 5
    • 36849060783 scopus 로고    scopus 로고
    • Libsvm. In www.csie.ntu.edu.tw/cjlin/libsvm/.
    • Libsvm. In www.csie.ntu.edu.tw/cjlin/libsvm/.
  • 7
    • 85149612939 scopus 로고
    • Fast effective rule induction
    • W. Cohen. Fast effective rule induction. In ICML, pages 115-123, 1995.
    • (1995) ICML , pp. 115-123
    • Cohen, W.1
  • 10
    • 0344324689 scopus 로고    scopus 로고
    • Metacost: A general method for making classifiers cost-sensitive
    • P. Domingos. Metacost: a general method for making classifiers cost-sensitive. In KDD, pages 155-164, 1999.
    • (1999) KDD , pp. 155-164
    • Domingos, P.1
  • 11
    • 34547993162 scopus 로고    scopus 로고
    • C4.5, class imbalance, and cost sensitivity: Why under-sampling beats over-sampling
    • C. Drummond and R. Holte. C4.5, class imbalance, and cost sensitivity: Why under-sampling beats over-sampling. In ICML Workshop, 2003.
    • (2003) ICML Workshop
    • Drummond, C.1    Holte, R.2
  • 13
    • 84867577175 scopus 로고    scopus 로고
    • The foundations of cost-sensitive learning
    • C. Elkan. The foundations of cost-sensitive learning. In IJCAI, pages 973-978, 2001.
    • (2001) IJCAI , pp. 973-978
    • Elkan, C.1
  • 14
    • 0013316935 scopus 로고    scopus 로고
    • Adacost: Misclassification cost-sensitive boosting
    • W. Fan, S. Stolfo, J. Zhang, and P. Chan. Adacost: misclassification cost-sensitive boosting. In ICML, pages 97-105, 1999.
    • (1999) ICML , pp. 97-105
    • Fan, W.1    Stolfo, S.2    Zhang, J.3    Chan, P.4
  • 17
    • 0034825778 scopus 로고    scopus 로고
    • Mining needle in a haystack: Classifying rare classes via two-phase rule induction
    • M. Joshi, R. Agarwal, and V. Kumar. Mining needle in a haystack: Classifying rare classes via two-phase rule induction. In SIGMOD, pages 91-102, 2001.
    • (2001) SIGMOD , pp. 91-102
    • Joshi, M.1    Agarwal, R.2    Kumar, V.3
  • 18
    • 0242625275 scopus 로고    scopus 로고
    • M. Joshi, R. Agarwal, and V. Kumar. Predicting rare classes: Can boosting make any weak learner strong? In KDD, 2002.
    • M. Joshi, R. Agarwal, and V. Kumar. Predicting rare classes: Can boosting make any weak learner strong? In KDD, 2002.
  • 19
    • 36849067159 scopus 로고    scopus 로고
    • G. Karypis. Cluto, software for clustering high-dimensional dataseis, version 2.1.1. In
    • G. Karypis. Cluto - software for clustering high-dimensional dataseis, version 2.1.1. In http://glaros.dtc.umn.edu/gkhome/views/cluto.
  • 20
    • 0031998121 scopus 로고    scopus 로고
    • Machine learning for the detection of oil spills in satellite radar imaages
    • M. Kubat, R. Holte, and S. Matwin. Machine learning for the detection of oil spills in satellite radar imaages. Machine Learning, 30:195-215, 1998.
    • (1998) Machine Learning , vol.30 , pp. 195-215
    • Kubat, M.1    Holte, R.2    Matwin, S.3
  • 21
    • 0001972236 scopus 로고    scopus 로고
    • Addressing the curse of unbalanced training sets: One-sided selection
    • M. Kubat and S. Matwin. Addressing the curse of unbalanced training sets: One-sided selection. In ICML, pages 179-186, 1997.
    • (1997) ICML , pp. 179-186
    • Kubat, M.1    Matwin, S.2
  • 22
    • 85161651554 scopus 로고    scopus 로고
    • Data mining for direct marketing: Problems and solutions
    • C. Ling and C. Li. Data mining for direct marketing: Problems and solutions. In KDD, pages 73-79, 1998.
    • (1998) KDD , pp. 73-79
    • Ling, C.1    Li, C.2
  • 24
    • 36849075937 scopus 로고    scopus 로고
    • Learning decision trees for loss minimization in multi-class problems
    • Oregon State University
    • D. Margineantu and T. Dietterich. Learning decision trees for loss minimization in multi-class problems. In TR 99-30-03. Oregon State University, 1999.
    • (1999) TR 99-30-03
    • Margineantu, D.1    Dietterich, T.2
  • 25
    • 36849039189 scopus 로고    scopus 로고
    • P. Murphy and D. Aha. In UCI Repository of Machine Learning Databases. U. of California at Irvine, 1994.
    • P. Murphy and D. Aha. In UCI Repository of Machine Learning Databases. U. of California at Irvine, 1994.
  • 27
    • 84948481845 scopus 로고
    • An algorithm for suffix stripping
    • July
    • M. F. Porter. An algorithm for suffix stripping. Program, 14(3): 130-137, July 1980.
    • (1980) Program , vol.14 , Issue.3 , pp. 130-137
    • Porter, M.F.1
  • 28
    • 0026120032 scopus 로고
    • Small sample size effects in statistical pattern recognition: Recommendations for practitioners
    • S. Raudys and A. Jain. Small sample size effects in statistical pattern recognition: Recommendations for practitioners. TPAMI, 13(3):252-264, 1991.
    • (1991) TPAMI , vol.13 , Issue.3 , pp. 252-264
    • Raudys, S.1    Jain, A.2
  • 31
    • 36849020239 scopus 로고    scopus 로고
    • G. Weiss. Mining with rarity: a unifying framework. ACM SIGKDD Explorations, 6(1):7-19, 2004.
    • G. Weiss. Mining with rarity: a unifying framework. ACM SIGKDD Explorations, 6(1):7-19, 2004.
  • 32
    • 33749245586 scopus 로고    scopus 로고
    • Cost-sensitive learning by cost-proportionate example weighting
    • B. Zadrozny, J. Langford, and N. Abe. Cost-sensitive learning by cost-proportionate example weighting. In ICDM, pages 435-442, 2003.
    • (2003) ICDM , pp. 435-442
    • Zadrozny, B.1    Langford, J.2    Abe, N.3
  • 33
    • 36849038112 scopus 로고    scopus 로고
    • Investigation of artificial neural networks for classifying levels of financial distress of firms: The case of an unbalanced training sample
    • Kluwer
    • J. Zurada, B. Foster, and T. Ward. Investigation of artificial neural networks for classifying levels of financial distress of firms: The case of an unbalanced training sample. In Knowledge Discovery for Business Information Systems, pages 397-423. Kluwer, 2001.
    • (2001) Knowledge Discovery for Business Information Systems , pp. 397-423
    • Zurada, J.1    Foster, B.2    Ward, T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.