-
4
-
-
0036375597
-
-
Liang, P. H.; Ko, T. P.; Wang, A. H. J. Eur. J. Biochem. 2002, 269, 3339-3354
-
(2002)
Eur. J. Biochem.
, vol.269
, pp. 3339-3354
-
-
Liang, P.H.1
Ko, T.P.2
Wang, A.H.J.3
-
6
-
-
33745631233
-
-
Greenhagen, B. T.; O'Maille, P. E.; Noel, J. P.; Chappell, J. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 9826-9831
-
(2006)
Proc. Natl. Acad. Sci. U.S.A.
, vol.103
, pp. 9826-9831
-
-
Greenhagen, B.T.1
O'maille, P.E.2
Noel, J.P.3
Chappell, J.4
-
8
-
-
34147178365
-
-
Thulasiram, H. V.; Erickson, H. K.; Poulter, C. D. Science 2007, 316, 73-76
-
(2007)
Science
, vol.316
, pp. 73-76
-
-
Thulasiram, H.V.1
Erickson, H.K.2
Poulter, C.D.3
-
9
-
-
34548851139
-
-
Vedula, L. S.; Zhao, Y. X.; Coates, R. M.; Koyama, T.; Cane, D. E.; Christianson, D. W. Arch. Biochem. Biophys. 2007, 466, 260-266
-
(2007)
Arch. Biochem. Biophys.
, vol.466
, pp. 260-266
-
-
Vedula, L.S.1
Zhao, Y.X.2
Coates, R.M.3
Koyama, T.4
Cane, D.E.5
Christianson, D.W.6
-
10
-
-
47249119324
-
-
Shishova, E. Y.; Yu, F. L.; Miller, D. J.; Faraldos, J. A.; Zhao, Y. X.; Coates, R. M.; Allemann, R. K.; Cane, D. E.; Christianson, D. W. J. Biol. Chem. 2008, 283, 15431-15439
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 15431-15439
-
-
Shishova, E.Y.1
Yu, F.L.2
Miller, D.J.3
Faraldos, J.A.4
Zhao, Y.X.5
Coates, R.M.6
Allemann, R.K.7
Cane, D.E.8
Christianson, D.W.9
-
11
-
-
77749265076
-
-
Aaron, J. A.; Lin, X.; Cane, D. E.; Christianson, D. W. Biochemistry 2010, 49, 1787-1797
-
(2010)
Biochemistry
, vol.49
, pp. 1787-1797
-
-
Aaron, J.A.1
Lin, X.2
Cane, D.E.3
Christianson, D.W.4
-
12
-
-
33646837897
-
-
Payandeh, J.; Fujihashi, M.; Gillon, W.; Pai, E. F. J. Biol. Chem. 2006, 281, 6070-6078
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 6070-6078
-
-
Payandeh, J.1
Fujihashi, M.2
Gillon, W.3
Pai, E.F.4
-
13
-
-
0029137828
-
-
TIM barrel proteins catalyze a wide range of enzymatic reactions; their structural details, mechanism, and evolution have been the focus of numerous studies. See:;,-503
-
TIM barrel proteins catalyze a wide range of enzymatic reactions; their structural details, mechanism, and evolution have been the focus of numerous studies. See: Reardon, D.; Farber, G. K. FASEB J. 1995, 9, 497-503
-
(1995)
FASEB J.
, vol.9
, pp. 497
-
-
Reardon, D.1
Farber, G.K.2
-
15
-
-
0034284955
-
-
Lang, D.; Thoma, R.; Henn-Sax, M.; Sterner, R.; Wilmanns, M. Science 2000, 289, 1546-1550
-
(2000)
Science
, vol.289
, pp. 1546-1550
-
-
Lang, D.1
Thoma, R.2
Henn-Sax, M.3
Sterner, R.4
Wilmanns, M.5
-
17
-
-
0036384350
-
-
Nagano, N.; Orengo, C. A.; Thornton, J. M. J. Mol. Biol. 2002, 321, 741-765
-
(2002)
J. Mol. Biol.
, vol.321
, pp. 741-765
-
-
Nagano, N.1
Orengo, C.A.2
Thornton, J.M.3
-
18
-
-
0037304408
-
-
Anantharaman, V.; Aravind, L.; Koonin, E. V. Curr. Opin. Chem. Biol. 2003, 7, 12-20
-
(2003)
Curr. Opin. Chem. Biol.
, vol.7
, pp. 12-20
-
-
Anantharaman, V.1
Aravind, L.2
Koonin, E.V.3
-
20
-
-
44449087804
-
-
A distinct PT barrel structure has recently been determined for several aromatic prenyltransferases, including Orf2 and CloQ. See:,-1463
-
A distinct PT barrel structure has recently been determined for several aromatic prenyltransferases, including Orf2 and CloQ. See: Tello, M.; Kuzuyama, T.; Heide, L.; Noel, J. P.; Richard, S. B. Cell. Mol. Life Sci. 2008, 65, 1459-1463
-
(2008)
Cell. Mol. Life Sci.
, vol.65
, pp. 1459
-
-
Tello, M.1
Kuzuyama, T.2
Heide, L.3
Noel, J.P.4
Richard, S.B.5
-
21
-
-
20544457539
-
-
Kuzuyama, T.; Noel, J. P.; Richard, S. B. Nature 2005, 435, 983-987
-
(2005)
Nature
, vol.435
, pp. 983-987
-
-
Kuzuyama, T.1
Noel, J.P.2
Richard, S.B.3
-
22
-
-
0027486805
-
-
Chen, A. J.; Zhang, D. L.; Poulter, C. D. J. Biol. Chem. 1993, 268, 21701-21705
-
(1993)
J. Biol. Chem.
, vol.268
, pp. 21701-21705
-
-
Chen, A.J.1
Zhang, D.L.2
Poulter, C.D.3
-
25
-
-
0035846527
-
-
Soderberg, T.; Chen, A. J.; Poulter, C. D. Biochemistry 2001, 40, 14847-14854
-
(2001)
Biochemistry
, vol.40
, pp. 14847-14854
-
-
Soderberg, T.1
Chen, A.J.2
Poulter, C.D.3
-
26
-
-
0038647459
-
-
Nemoto, N.; Oshima, T.; Yamagishi, A. J. Biochem. 2003, 133, 651-657
-
(2003)
J. Biochem.
, vol.133
, pp. 651-657
-
-
Nemoto, N.1
Oshima, T.2
Yamagishi, A.3
-
27
-
-
70349088626
-
-
Ostash, B.; Doud, E. H.; Lin, C.; Ostash, I.; Perlstein, D. L.; Fuse, S.; Wolpert, M.; Kahne, D.; Walker, S. Biochemistry 2009, 48, 8830-8841
-
(2009)
Biochemistry
, vol.48
, pp. 8830-8841
-
-
Ostash, B.1
Doud, E.H.2
Lin, C.3
Ostash, I.4
Perlstein, D.L.5
Fuse, S.6
Wolpert, M.7
Kahne, D.8
Walker, S.9
-
28
-
-
33947232236
-
-
Ostash, B.; Saghatelian, A.; Walker, S. Chem. Biol. 2007, 14, 257-267
-
(2007)
Chem. Biol.
, vol.14
, pp. 257-267
-
-
Ostash, B.1
Saghatelian, A.2
Walker, S.3
-
29
-
-
0037322820
-
-
118 The cis -geometry observed in the products of cis -prenyl chain elongating enzymes results from a different type of reaction mechanism. See
-
Kharel, Y.; Koyama, T. Nat. Prod. Rep. 2003, 20, 111-118 The cis -geometry observed in the products of cis -prenyl chain elongating enzymes results from a different type of reaction mechanism. See
-
(2003)
Nat. Prod. Rep.
, vol.20
, pp. 111
-
-
Kharel, Y.1
Koyama, T.2
-
30
-
-
79551695447
-
-
Nerolidyl diphosphate is a demonstrated intermediate in the cyclization-isomerization-cyclization of FPP to 6-, 10-, and 11-membered ring sesquiterpenes with cis -double bonds. See: Cane, D. E.; Ha, H. J.
-
Nerolidyl diphosphate is a demonstrated intermediate in the cyclization-isomerization-cyclization of FPP to 6-, 10-, and 11-membered ring sesquiterpenes with cis -double bonds. See: Cane, D. E.; Ha, H. J.
-
-
-
-
31
-
-
0013561046
-
-
Pargellis, C.; Waldmeier, F.; Swanson, S.; Murthy, P. P. N. Bioorg. Chem. 1985, 13, 246-265
-
(1985)
Bioorg. Chem.
, vol.13
, pp. 246-265
-
-
Pargellis, C.1
Waldmeier, F.2
Swanson, S.3
Murthy, P.P.N.4
-
33
-
-
0025335195
-
-
Cane, D. E.; Pawlak, J. L.; Horak, R. M.; Hohn, T. M. Biochemistry 1990, 29, 5476-5490
-
(1990)
Biochemistry
, vol.29
, pp. 5476-5490
-
-
Cane, D.E.1
Pawlak, J.L.2
Horak, R.M.3
Hohn, T.M.4
-
34
-
-
79551692029
-
-
Domingo, V.; Arteaga, J. F.; del Moral, J. F. Q
-
Domingo, V.; Arteaga, J. F.; del Moral, J. F. Q.
-
-
-
-
36
-
-
77951133659
-
-
Noel, J. P.; Dellas, N.; Faraldos, J. A.; Zhao, M.; Hess, B. A.; Smentek, L.; Coates, R. M.; O'Maille, P. E. ACS Chem. Biol. 2010, 5, 377-392
-
(2010)
ACS Chem. Biol.
, vol.5
, pp. 377-392
-
-
Noel, J.P.1
Dellas, N.2
Faraldos, J.A.3
Zhao, M.4
Hess, B.A.5
Smentek, L.6
Coates, R.M.7
O'maille, P.E.8
-
37
-
-
79551694825
-
-
Rates were measured in triplicate using 1 mM 3PG, 40 μM lipid pyrophosphate, and 120 nM enzyme. Conversion was <10%. See Supporting Information (SI) for full details.
-
Rates were measured in triplicate using 1 mM 3PG, 40 μM lipid pyrophosphate, and 120 nM enzyme. Conversion was <10%. See Supporting Information (SI) for full details.
-
-
-
-
38
-
-
79551710108
-
-
We cannot rule out that the intermediate detected could also be cis, trans -farnesylpyrophosphate
-
We cannot rule out that the intermediate detected could also be cis, trans -farnesylpyrophosphate.
-
-
-
-
39
-
-
79551701331
-
-
See SI.
-
See SI.
-
-
-
-
40
-
-
79551694206
-
-
MoeO5 homologues are present and clustered with moenomycin type biosynthetic clusters in S. clavuligerus, Photohrabdus luminescens subsp. laumondii TTO1, and P. asymbiotica.
-
MoeO5 homologues are present and clustered with moenomycin type biosynthetic clusters in S. clavuligerus, Photohrabdus luminescens subsp. laumondii TTO1, and P. asymbiotica.
-
-
-
-
41
-
-
24644505760
-
-
Badger, J. Proteins: Struct., Funct., Bioinf. 2005, 60, 787-796
-
(2005)
Proteins: Struct., Funct., Bioinf.
, vol.60
, pp. 787-796
-
-
Badger, J.1
-
42
-
-
47249109473
-
-
Guldan, H.; Sterner, R.; Babinger, P. Biochemistry 2008, 47, 7376-7384
-
(2008)
Biochemistry
, vol.47
, pp. 7376-7384
-
-
Guldan, H.1
Sterner, R.2
Babinger, P.3
-
43
-
-
79551690688
-
-
Rates were measured in triplicate using 1 mM G1P, 40 μM lipid pyrophosphate, and 3.4 μM enzyme. Conversion was <15%. See SI for full details.
-
Rates were measured in triplicate using 1 mM G1P, 40 μM lipid pyrophosphate, and 3.4 μM enzyme. Conversion was <15%. See SI for full details.
-
-
-
-
44
-
-
79551695746
-
-
How FPP is excluded is unknown, although we note that the hydrophobic tunnel in PcrB has a kink that would require substrates longer than 10 carbons to bend.
-
How FPP is excluded is unknown, although we note that the hydrophobic tunnel in PcrB has a kink that would require substrates longer than 10 carbons to bend.
-
-
-
-
45
-
-
79551714968
-
-
A bacterial enzyme that interconverts glyceraldehyde-phosphate and G1P was recently identified, which suggests that bacteria produce this metabolite for some purpose. See: ref 17.
-
A bacterial enzyme that interconverts glyceraldehyde-phosphate and G1P was recently identified, which suggests that bacteria produce this metabolite for some purpose. See: ref 17.
-
-
-
-
46
-
-
0035929121
-
-
Ji, Y. D.; Zhang, B.; Van Horn, S. F.; Warren, P.; Woodnutt, G.; Burnham, M. K. R.; Rosenberg, M. Science 2001, 293, 2266-2269
-
(2001)
Science
, vol.293
, pp. 2266-2269
-
-
Ji, Y.D.1
Zhang, B.2
Van Horn, S.F.3
Warren, P.4
Woodnutt, G.5
Burnham, M.K.R.6
Rosenberg, M.7
-
48
-
-
33750437291
-
-
Ruiz-Maso, J. A.; Anand, S. P.; Espinosa, M.; Khan, S. A.; del Solar, G. J. Bacteriol. 2006, 188, 7416-7425
-
(2006)
J. Bacteriol.
, vol.188
, pp. 7416-7425
-
-
Ruiz-Maso, J.A.1
Anand, S.P.2
Espinosa, M.3
Khan, S.A.4
Del Solar, G.5
-
49
-
-
67650066482
-
-
Slatter, A. F.; Thomas, C. D.; Webb, M. R. Biochemistry 2009, 48, 6326-6334
-
(2009)
Biochemistry
, vol.48
, pp. 6326-6334
-
-
Slatter, A.F.1
Thomas, C.D.2
Webb, M.R.3
-
50
-
-
74349093158
-
-
Lee, C. A.; Babic, A.; Grossman, A. D. Mol. Microbiol. 2010, 75, 268-279
-
(2010)
Mol. Microbiol.
, vol.75
, pp. 268-279
-
-
Lee, C.A.1
Babic, A.2
Grossman, A.D.3
-
51
-
-
79551716851
-
-
Using homology searches, we have identified a putative new subfamily of TIM barrel PTs that are highly conserved in Gram-negative bacteroides, and we predict that these enzymes also use G1P as a substrate and produce a trans product (Figure S4).
-
Using homology searches, we have identified a putative new subfamily of TIM barrel PTs that are highly conserved in Gram-negative bacteroides, and we predict that these enzymes also use G1P as a substrate and produce a trans product (Figure S4).
-
-
-
|