메뉴 건너뛰기




Volumn 27, Issue 2, 2011, Pages 238-244

Fast and efficient dynamic nested effects models

Author keywords

[No Author keywords available]

Indexed keywords

ANIMAL; ARTICLE; BIOLOGICAL MODEL; COMPUTER SIMULATION; EMBRYONIC STEM CELL; GENE REGULATORY NETWORK; METABOLISM; MOUSE; SIGNAL TRANSDUCTION; STATISTICAL MODEL;

EID: 78651456319     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btq631     Document Type: Article
Times cited : (24)

References (32)
  • 1
    • 0011560546 scopus 로고
    • The transitive reduction of a directed graph
    • Aho,A. et al. (1972) The transitive reduction of a directed graph. SIAM J. Comput., 1, 131-137.
    • (1972) SIAM J. Comput. , vol.1 , pp. 131-137
    • Aho, A.1
  • 3
    • 66149152682 scopus 로고    scopus 로고
    • Modeling the temporal interplay of molecular signaling and gene expression by using dynamic nested effects models
    • Anchang,B. et al. (2009) Modeling the temporal interplay of molecular signaling and gene expression by using dynamic nested effects models. Proc. Natl Acad. Sci. USA, 106, 6447-6452.
    • (2009) Proc. Natl Acad. Sci. USA , vol.106 , pp. 6447-6452
    • Anchang, B.1
  • 4
    • 77953245945 scopus 로고    scopus 로고
    • Automated identification of pathways from quantitative genetic interaction data
    • Battle,A. et al. (2010) Automated identification of pathways from quantitative genetic interaction data. Mol. Syst. Biol., 6, 1-13.
    • (2010) Mol. Syst. Biol. , vol.6 , pp. 1-13
    • Battle, A.1
  • 5
    • 70350686180 scopus 로고    scopus 로고
    • Setdb1 contributes to repression of genes encoding developmental regulators and maintenance of es cell state esrrb activates oct4 transcription and sustains self-renewal and pluripotency in embryonic stem cells
    • 2484-2482
    • Bilodeau,S. et al. (2009) Setdb1 contributes to repression of genes encoding developmental regulators and maintenance of es cell state esrrb activates oct4 transcription and sustains self-renewal and pluripotency in embryonic stem cells. Genes Dev., 23, 2484-2482.
    • (2009) Genes Dev , vol.23
    • Bilodeau, S.1
  • 7
    • 18144425479 scopus 로고    scopus 로고
    • Epistasis analysis with global transcriptional phenotypes
    • Driessche,N.V. et al. (2005) Epistasis analysis with global transcriptional phenotypes. Nat. Genet., 37, 471-477.
    • (2005) Nat. Genet. , vol.37 , pp. 471-477
    • Driessche, N.V.1
  • 8
    • 0032545933 scopus 로고    scopus 로고
    • Potent and specific genetic interference by double-stranded RNA in caenorhabditis elegans
    • Fire,A. et al. (1998) Potent and specific genetic interference by double-stranded RNA in caenorhabditis elegans. Nature, 391, 806-811.
    • (1998) Nature , vol.391 , pp. 806-811
    • Fire, A.1
  • 9
    • 38849147181 scopus 로고    scopus 로고
    • Large scale statistical inference of signaling pathways from RNAi and microarray data
    • Fröhlich,H. et al. (2007) Large scale statistical inference of signaling pathways from RNAi and microarray data. BMC Bioinformatics, 8, 1-15.
    • (2007) BMC Bioinformatics , vol.8 , pp. 1-15
    • Fröhlich, H.1
  • 10
    • 54949104573 scopus 로고    scopus 로고
    • Estimating large scale signaling networks through nested effect models with intervention effects from microarray data
    • Fröhlich,H. et al. (2008) Estimating large scale signaling networks through nested effect models with intervention effects from microarray data. Bioinformatics, 24, 2650-2656.
    • (2008) Bioinformatics , vol.24 , pp. 2650-2656
    • Fröhlich, H.1
  • 11
    • 66349107768 scopus 로고    scopus 로고
    • Nested effects models for learning signaling networks from perturbation data
    • Fröhlich,H. et al. (2009) Nested effects models for learning signaling networks from perturbation data. Biometrical J., 2, 304-323.
    • (2009) Biometrical J. , vol.2 , pp. 304-323
    • Fröhlich, H.1
  • 12
    • 33646012325 scopus 로고    scopus 로고
    • A probabilistic methodology for integrating knowledge and experiments on biological networks
    • Gat-Viks,I. et al. (2006) A probabilistic methodology for integrating knowledge and experiments on biological networks. J. Comput. Biol., 13, 165-181.
    • (2006) J. Comput. Biol. , vol.13 , pp. 165-181
    • Gat-Viks, I.1
  • 13
    • 0002049440 scopus 로고    scopus 로고
    • Learning dynamic Bayesian networks
    • Ghahramani,Z. (1997) Learning dynamic Bayesian networks. Lect. Notes Comput. Sci., 1387, 168-197.
    • (1997) Lect. Notes Comput. Sci. , vol.1387 , pp. 168-197
    • Ghahramani, Z.1
  • 14
    • 0036947892 scopus 로고    scopus 로고
    • Robust estimators for expression analysis
    • Hubbell,E. et al. (2002) Robust estimators for expression analysis. Bioinformatics, 18, 1585-1592.
    • (2002) Bioinformatics , vol.18 , pp. 1585-1592
    • Hubbell, E.1
  • 15
    • 33746773659 scopus 로고    scopus 로고
    • Dissecting self-renewal in stem cells with RNA interference
    • Ivanova,N. et al. (2006) Dissecting self-renewal in stem cells with RNA interference. Nature, 442, 533-538.
    • (2006) Nature , vol.442 , pp. 533-538
    • Ivanova, N.1
  • 16
    • 61949239349 scopus 로고    scopus 로고
    • Inferring disease-related pathways using a probabilistic epistasis model
    • Kanabar,P.N. et al. (2009) Inferring disease-related pathways using a probabilistic epistasis model. Pac. Symp. Biocomput., 491, 480-491.
    • (2009) Pac. Symp. Biocomput. , vol.491 , pp. 480-491
    • Kanabar, P.N.1
  • 17
    • 77955867869 scopus 로고    scopus 로고
    • TRANSWESD: inferring cellular networks with transitive reduction
    • Klamt,S. et al. (2010) TRANSWESD: inferring cellular networks with transitive reduction. Bioinformatics, 26, 2160-2168.
    • (2010) Bioinformatics , vol.26 , pp. 2160-2168
    • Klamt, S.1
  • 18
    • 77951641247 scopus 로고    scopus 로고
    • Predicting causal effects in large-scale systems from observational data
    • Maathuis,M.H. et al. (2010) Predicting causal effects in large-scale systems from observational data. Nat. Methods, 7, 247-248.
    • (2010) Nat. Methods , vol.7 , pp. 247-248
    • Maathuis, M.H.1
  • 19
    • 69949166983 scopus 로고    scopus 로고
    • Estimating high-dimensional intervention effects from observational data
    • Maathuis,M. et al. (2009) Estimating high-dimensional intervention effects from observational data. Ann. Stat., 37, 3133-3164.
    • (2009) Ann. Stat. , vol.37 , pp. 3133-3164
    • Maathuis, M.1
  • 20
    • 27744489138 scopus 로고    scopus 로고
    • Non-transcriptional pathway features reconstructed from secondary effects of RNA interference
    • Markowetz,F. et al. (2005) Non-transcriptional pathway features reconstructed from secondary effects of RNA interference. Bioinformatics, 21, 4026-4032.
    • (2005) Bioinformatics , vol.21 , pp. 4026-4032
    • Markowetz, F.1
  • 21
    • 34547840242 scopus 로고    scopus 로고
    • Nested effects models for high-dimensional phenotyping screens
    • Markowetz,F. et al. (2007) Nested effects models for high-dimensional phenotyping screens. Bioinformatics, 23, i305-i312.
    • (2007) Bioinformatics , vol.23
    • Markowetz, F.1
  • 22
    • 51049117937 scopus 로고    scopus 로고
    • Models from experiments: combinatorial drug perturbations of cancer cells
    • Nelander,S. et al. (2008) Models from experiments: combinatorial drug perturbations of cancer cells. Mol. Syst. Biol., 4, 216.
    • (2008) Mol. Syst. Biol. , vol.4 , pp. 216
    • Nelander, S.1
  • 24
    • 18144442687 scopus 로고    scopus 로고
    • Inferring subnetworks from perturbed expression profiles
    • Pe'er,D. et al. (2001) Inferring subnetworks from perturbed expression profiles. Bioinformatics, 17 (Suppl. 1), S215-S224.
    • (2001) Bioinformatics , vol.17 , Issue.SUPPL. 1
    • Pe'er, D.1
  • 25
    • 25144501141 scopus 로고    scopus 로고
    • A Bayesian regression approach to the inference of regulatory networks from gene expression data
    • Rogers,S. and Girolami,M. (2005) A Bayesian regression approach to the inference of regulatory networks from gene expression data. Bioinformatics, 21, 3131-3137.
    • (2005) Bioinformatics , vol.21 , pp. 3131-3137
    • Rogers, S.1    Girolami, M.2
  • 26
    • 0345928693 scopus 로고    scopus 로고
    • Building and analysing genome-wide gene disruption networks
    • Rung,J. et al. (2002) Building and analysing genome-wide gene disruption networks. Bioinformatics, 18 (Suppl. 2), S202-S210.
    • (2002) Bioinformatics , vol.18 , Issue.SUPPL. 2
    • Rung, J.1
  • 27
    • 17644427718 scopus 로고    scopus 로고
    • Causal protein-signaling networks derived from multiparameter single-cell data
    • Sachs,K. et al. (2005) Causal protein-signaling networks derived from multiparameter single-cell data. Science, 308, 523-529.
    • (2005) Science , vol.308 , pp. 523-529
    • Sachs, K.1
  • 28
    • 36048997864 scopus 로고    scopus 로고
    • Discrimination of direct and indirect interactions in a network of regulatory effects
    • Tresch,A. et al. (2007) Discrimination of direct and indirect interactions in a network of regulatory effects. J. Comput. Biol., 14, 1217-1228.
    • (2007) J. Comput. Biol. , vol.14 , pp. 1217-1228
    • Tresch, A.1
  • 30
    • 59149106558 scopus 로고    scopus 로고
    • A factor graph nested effects model to identify networks from genetic perturbations
    • Vaske,C.J. et al. (2009) A factor graph nested effects model to identify networks from genetic perturbations. PLoS Comput. Biol., 5, e1000274.
    • (2009) PLoS Comput. Biol. , vol.5
    • Vaske, C.J.1
  • 31
    • 0036138322 scopus 로고    scopus 로고
    • How to reconstruct a large genetic network from n gene perturbations in fewer than n 2 easy steps
    • Wagner,A. (2001) How to reconstruct a large genetic network from n gene perturbations in fewer than n 2 easy steps. Bioinformatics, 17, 1183-1197.
    • (2001) Bioinformatics , vol.17 , pp. 1183-1197
    • Wagner, A.1
  • 32
    • 59849112976 scopus 로고    scopus 로고
    • A bayesian network view on nested effects models, EURASIP
    • Zeller,C. et al. (2009) A bayesian network view on nested effects models. EURASIP J. Bioinformatics Syst. Biol., 2009, 8.
    • (2009) J. Bioinformatics Syst. Biol. , vol.2009 , pp. 8
    • Zeller, C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.