메뉴 건너뛰기




Volumn 14, Issue 9, 2007, Pages 1217-1228

Discrimination of direct and indirect interactions in a network of regulatory effects

Author keywords

Algorithms; Computational molecular biology; Gene networks; Linear algebra; Structural and functional genomics

Indexed keywords

ALGORITHM; ARTICLE; DISCRIMINANT ANALYSIS; PRIORITY JOURNAL; SIMULATION;

EID: 36048997864     PISSN: 10665277     EISSN: None     Source Type: Journal    
DOI: 10.1089/cmb.2007.0085     Document Type: Article
Times cited : (14)

References (26)
  • 1
    • 0011560546 scopus 로고
    • The transitive reduction of a directed graph
    • Aho, A.V., Garey, M., and Ullman, J.D. 1972. The transitive reduction of a directed graph. SIAM J. Comput. 1, 131-137.
    • (1972) SIAM J. Comput , vol.1 , pp. 131-137
    • Aho, A.V.1    Garey, M.2    Ullman, J.D.3
  • 2
    • 16844376909 scopus 로고    scopus 로고
    • Reverse engineering of regulatory networks in human B cells
    • Basso, K., Margolin, A.A., Stolovitzky, G., et al. 2005. Reverse engineering of regulatory networks in human B cells. Nat. Genet. 37, 382-390.
    • (2005) Nat. Genet , vol.37 , pp. 382-390
    • Basso, K.1    Margolin, A.A.2    Stolovitzky, G.3
  • 3
    • 0033655775 scopus 로고    scopus 로고
    • Mutual information relevance networks: Functional genomic clustering using pairwise entropy measurements
    • Butte, A., and Kohane, I. 2000. Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements. Pacif. Symp. Biocomput. 418-429.
    • (2000) Pacif. Symp. Biocomput , pp. 418-429
    • Butte, A.1    Kohane, I.2
  • 4
    • 33646107783 scopus 로고    scopus 로고
    • Large-sample learning of Bayesian networks is np-hard
    • Chickering, D.M., Heckerman, D., and Meek, C. 2004. Large-sample learning of Bayesian networks is np-hard. J. Machine Learning Res. 5, 1287-1330.
    • (2004) J. Machine Learning Res , vol.5 , pp. 1287-1330
    • Chickering, D.M.1    Heckerman, D.2    Meek, C.3
  • 5
    • 18144425479 scopus 로고    scopus 로고
    • Epistasis analysis with global transcriptional phenotypes
    • Driessche, N.V., Demsar, J., Booth, E.O., et al. 2005. Epistasis analysis with global transcriptional phenotypes. Nat. Genet. 37, 471-477.
    • (2005) Nat. Genet , vol.37 , pp. 471-477
    • Driessche, N.V.1    Demsar, J.2    Booth, E.O.3
  • 7
    • 84945709831 scopus 로고
    • Algorithm 97 (shortest path)
    • Floyd, R.W. 1962. Algorithm 97 (shortest path). Commun. ACM 5, 345.
    • (1962) Commun. ACM , vol.5 , pp. 345
    • Floyd, R.W.1
  • 8
    • 0037262841 scopus 로고    scopus 로고
    • Being Bayesian about network structure: A Bayesian approach to structure discovery in Bayesian networks
    • Friedman, N., and Koller, D. 2003. Being Bayesian about network structure: a Bayesian approach to structure discovery in Bayesian networks. Machine Learn. 50, 95-126.
    • (2003) Machine Learn , vol.50 , pp. 95-126
    • Friedman, N.1    Koller, D.2
  • 9
    • 33845350636 scopus 로고    scopus 로고
    • RNA interference technologies and their use in cancer research
    • Gaither, A., and Iourgenko, V. 2007. RNA interference technologies and their use in cancer research. Curr. Opin. Oncol. 19, 50-54.
    • (2007) Curr. Opin. Oncol , vol.19 , pp. 50-54
    • Gaither, A.1    Iourgenko, V.2
  • 10
    • 0033668758 scopus 로고    scopus 로고
    • Uncovering functionally relevant signaling pathways using microarray-based expression profiling
    • Harkin, D.P. 2000. Uncovering functionally relevant signaling pathways using microarray-based expression profiling. Oncologist 5, 501-507.
    • (2000) Oncologist , vol.5 , pp. 501-507
    • Harkin, D.P.1
  • 11
    • 0035319006 scopus 로고    scopus 로고
    • Computational studies of gene regulatory networks: In numero molecular biology
    • Hasty, J., McMillen, D., Isaacs, F., et al. 2001. Computational studies of gene regulatory networks: in numero molecular biology. Nat. Rev. Genet. 2, 268-279.
    • (2001) Nat. Rev. Genet , vol.2 , pp. 268-279
    • Hasty, J.1    McMillen, D.2    Isaacs, F.3
  • 12
    • 0033642067 scopus 로고    scopus 로고
    • Discovery of regulatory interactions through perturbation: Inference and experimental design
    • Ideker, T., Thorsson, V., and Karp, R.M. 2000. Discovery of regulatory interactions through perturbation: inference and experimental design. Proc. Pacif. Symp. Biocomput. 5, 302-313.
    • (2000) Proc. Pacif. Symp. Biocomput , vol.5 , pp. 302-313
    • Ideker, T.1    Thorsson, V.2    Karp, R.M.3
  • 13
    • 31844439894 scopus 로고    scopus 로고
    • Exact Bayesian structure discovery in Bayesian networks
    • Koivisto, M., and Sood, K. 2004. Exact Bayesian structure discovery in Bayesian networks. J. Machine Learn. Res. 5, 549-573.
    • (2004) J. Machine Learn. Res , vol.5 , pp. 549-573
    • Koivisto, M.1    Sood, K.2
  • 14
    • 33947305781 scopus 로고    scopus 로고
    • Aracne: An algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context
    • Margolin, A., Nemenman, I., Basso, K., et al. 2006. Aracne: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinform. 7, S7.
    • (2006) BMC Bioinform , vol.7
    • Margolin, A.1    Nemenman, I.2    Basso, K.3
  • 16
    • 27744489138 scopus 로고    scopus 로고
    • Non-transcriptional pathway features reconstructed from secondary effects of RNA interference
    • Markowetz, F., Bloch, J., and Spang, R. 2005. Non-transcriptional pathway features reconstructed from secondary effects of RNA interference. Bioinformatics 21, 4026-4032.
    • (2005) Bioinformatics , vol.21 , pp. 4026-4032
    • Markowetz, F.1    Bloch, J.2    Spang, R.3
  • 17
    • 34547840242 scopus 로고    scopus 로고
    • Nested effects models for high-dimensional phenotyping screens
    • ISMB/ECCB proceedings 23
    • Markowetz, F., Kostka, D., Troyanskaya, O., et al. 2007. Nested effects models for high-dimensional phenotyping screens. Bioinformatics (ISMB/ECCB 2007 proceedings) 23, i305-i312.
    • (2007) Bioinformatics
    • Markowetz, F.1    Kostka, D.2    Troyanskaya, O.3
  • 18
    • 15944364151 scopus 로고    scopus 로고
    • An empirical Bayes approach to inferring large-scale gene association networks
    • Schäfer, J., and Strimmer, K. 2005. An empirical Bayes approach to inferring large-scale gene association networks. Bioinformatics 21, 754-764.
    • (2005) Bioinformatics , vol.21 , pp. 754-764
    • Schäfer, J.1    Strimmer, K.2
  • 19
    • 36048997799 scopus 로고    scopus 로고
    • Lassoorderseach: Learning directed graphical model stucutre using 11-penalized regression and order search
    • Presented at
    • Schmidt, M., and Murphy, K. 2006. Lassoorderseach: learning directed graphical model stucutre using 11-penalized regression and order search. Presented at NIPS 2006.
    • (2006) NIPS
    • Schmidt, M.1    Murphy, K.2
  • 20
    • 0141993704 scopus 로고    scopus 로고
    • A gene-coexpression network for global discovery of conserved genetic modules
    • Stuart, J.M., Segal, E., Koller, D., et al. 2003. A gene-coexpression network for global discovery of conserved genetic modules. Science 302, 249-255.
    • (2003) Science , vol.302 , pp. 249-255
    • Stuart, J.M.1    Segal, E.2    Koller, D.3
  • 21
    • 36348929435 scopus 로고    scopus 로고
    • Ordering-based search: A simple and effective algorithm for learning Bayesian networks
    • Teyssier, M., and Koller, D. 2005. Ordering-based search: a simple and effective algorithm for learning Bayesian networks. Proc. 21st Conf. Uncertainty AI (UAI) 584-590.
    • (2005) Proc. 21st Conf. Uncertainty AI (UAI) , pp. 584-590
    • Teyssier, M.1    Koller, D.2
  • 22
  • 23
    • 0036177681 scopus 로고    scopus 로고
    • Estimating coarse gene network structure from large-scale gene perturbation data
    • Wagner, A. 2002. Estimating coarse gene network structure from large-scale gene perturbation data. Genome Res. 12, 309-315.
    • (2002) Genome Res , vol.12 , pp. 309-315
    • Wagner, A.1
  • 24
    • 1842607542 scopus 로고    scopus 로고
    • Reconstructing pathways in large genetic networks from genetic perturbations
    • Wagner, A. 2004. Reconstructing pathways in large genetic networks from genetic perturbations. J. Comput. Biol. 11, 53-60.
    • (2004) J. Comput. Biol , vol.11 , pp. 53-60
    • Wagner, A.1
  • 25
    • 30044444291 scopus 로고    scopus 로고
    • Wille, A., and Bühlmann, P. 2006. Low-order conditional independence graphs for inferring genetic networks. Statist. Appl. Genetics Mol. Biol. 5, art. 1.
    • Wille, A., and Bühlmann, P. 2006. Low-order conditional independence graphs for inferring genetic networks. Statist. Appl. Genetics Mol. Biol. 5, art. 1.
  • 26
    • 27744521520 scopus 로고    scopus 로고
    • Validation and refinement of gene-regulatory pathways on a network of physical interactions
    • Yeang, C.-H., Mak, H.C., McCuine, S., et al. 2005. Validation and refinement of gene-regulatory pathways on a network of physical interactions. Genome Biol. 6, R62.
    • (2005) Genome Biol , vol.6
    • Yeang, C.-H.1    Mak, H.C.2    McCuine, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.