메뉴 건너뛰기




Volumn 51, Issue 2, 2009, Pages 304-323

Nested effects models for learning signaling networks from perturbation data

Author keywords

Nested effects models; Perturbation data; Signaling pathway inference

Indexed keywords

BIOCHIPS; CANCER CELLS; CELL SIGNALING; SIGNALING;

EID: 66349107768     PISSN: 03233847     EISSN: 15214036     Source Type: Journal    
DOI: 10.1002/bimj.200800185     Document Type: Article
Times cited : (22)

References (29)
  • 1
    • 0011560546 scopus 로고
    • The transitive reduction of a directed graph
    • Aho, A., Garey, M., Ullman, J. (1972). The transitive reduction of a directed graph. SIAM Journal on Computing 1, 131-137.
    • (1972) SIAM Journal on Computing , vol.1 , pp. 131-137
    • Aho, A.1    Garey, M.2    Ullman, J.3
  • 2
    • 0001677717 scopus 로고
    • Controlling the false discovery rate: a practical and powerful approach to multiple testing
    • Benjamini, Y., Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B 57, 289-300.
    • (1995) Journal of the Royal Statistical Society, Series B , vol.57 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 3
    • 0036848010 scopus 로고    scopus 로고
    • Sequential activation of signaling pathways during innate immune responses in Drosophila
    • Boutros, M., Agaisse, H., Perrimon, N. (2002). Sequential activation of signaling pathways during innate immune responses in Drosophila. Developmental Cell 3, 711-722.
    • (2002) Developmental Cell , vol.3 , pp. 711-722
    • Boutros, M.1    Agaisse, H.2    Perrimon, N.3
  • 6
    • 0032545933 scopus 로고    scopus 로고
    • Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans
    • Fire, A., Xu, S., Montgomery, M., Kostas, S., Driver, S., Mello, C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806-811.
    • (1998) Nature , vol.391 , pp. 806-811
    • Fire, A.1    Xu, S.2    Montgomery, M.3    Kostas, S.4    Driver, S.5    Mello, C.6
  • 8
    • 54949104573 scopus 로고    scopus 로고
    • Estimating large scale signalling networks through nested effect models with intervention effects from microarray data
    • doi: 10.1093/bioinformatics/btm634
    • Fröhlich, H., Fellmann, M., Sültmann, H., Poustka, A., Beiβbarth, T. (2008). Estimating large scale signalling networks through nested effect models with intervention effects from microarray data. Bioinformatics 1, doi: 10.1093/bioinformatics/btm634.
    • (2008) Bioinformatics
    • Fröhlich, H.1    Fellmann, M.2    Sültmann, H.3    Poustka, A.4    Beiβbarth, T.5
  • 11
    • 11244346557 scopus 로고    scopus 로고
    • Variance stabilization applied to microarray data calibration and to the quantification of differential expression
    • Huber, W., Heydebreck, A., Sültmann, H., Poustka, A., Vingron, M. (2002). Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics 18, S96-S104.
    • (2002) Bioinformatics , vol.18
    • Huber, W.1    Heydebreck, A.2    Sültmann, H.3    Poustka, A.4    Vingron, M.5
  • 14
    • 27744489138 scopus 로고    scopus 로고
    • Non-transcriptional pathway features reconstructed from secondary effects of RNA interference
    • Markowetz, F., Bloch, J., Spang, R. (2005). Non-transcriptional pathway features reconstructed from secondary effects of RNA interference. Bioinformatics 21, 4026-4032.
    • (2005) Bioinformatics , vol.21 , pp. 4026-4032
    • Markowetz, F.1    Bloch, J.2    Spang, R.3
  • 15
    • 34547840242 scopus 로고    scopus 로고
    • Nested effects models for high-dimensional phenotyping screens
    • Markowetz, F., Kostka, D., Troyanskaya, O., Spang, R. (2007). Nested effects models for high-dimensional phenotyping screens. Bioinformatics 23, i305-i312.
    • (2007) Bioinformatics , vol.23
    • Markowetz, F.1    Kostka, D.2    Troyanskaya, O.3    Spang, R.4
  • 17
    • 18144442687 scopus 로고    scopus 로고
    • Inferring subnetworks from perturbed expression profiles
    • Pe'er, D., Regev, A., Elidan, G., Friedman, N. (2001). Inferring subnetworks from perturbed expression profiles. Bioinformatics 17, S215-S224.
    • (2001) Bioinformatics , vol.17
    • Pe'er, D.1    Regev, A.2    Elidan, G.3    Friedman, N.4
  • 18
    • 0038156106 scopus 로고    scopus 로고
    • Estimating the occurence of false positives and false negatives in microarray studies by approximating and partitioning the empirical distribution of p-values
    • Pounds, S., Morris, S. (2003). Estimating the occurence of false positives and false negatives in microarray studies by approximating and partitioning the empirical distribution of p-values. Bioinformatics 19, 1236-1242.
    • (2003) Bioinformatics , vol.19 , pp. 1236-1242
    • Pounds, S.1    Morris, S.2
  • 19
    • 25144501141 scopus 로고    scopus 로고
    • A Bayesian regression approach to the inference of regulatory networks from gene expression data
    • Rogers, S., Girolami, M. (2005). A Bayesian regression approach to the inference of regulatory networks from gene expression data. Bioinformatics 21, 3131-3137.
    • (2005) Bioinformatics , vol.21 , pp. 3131-3137
    • Rogers, S.1    Girolami, M.2
  • 22
    • 17644427718 scopus 로고    scopus 로고
    • Causal protein-signaling networks derived from multiparameter single-cell data
    • Sachs, K., Perez, O., Pe'er, D., Lauffenburger, D., Nolan, G. (2005). Causal protein-signaling networks derived from multiparameter single-cell data. Science 208, 523-529.
    • (2005) Science , vol.208 , pp. 523-529
    • Sachs, K.1    Perez, O.2    Pe'er, D.3    Lauffenburger, D.4    Nolan, G.5
  • 23
    • 84941530144 scopus 로고    scopus 로고
    • Addison-Wesley, Reading, MA
    • Sedgewick, R. (2002). Algorithms. Addison-Wesley, Reading, MA.
    • (2002) Algorithms
    • Sedgewick, R.1
  • 24
    • 4544341015 scopus 로고    scopus 로고
    • Linear models and empirical Bayes methods for assessing differential expression in microarray experiments
    • Smyth, G., (2004). Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Statistical Applications in Genetics and Molecular Biology 3.
    • (2004) Statistical Applications in Genetics and Molecular Biology , pp. 3
    • Smyth, G.1
  • 28
  • 29
    • 34249774309 scopus 로고    scopus 로고
    • Reconstructing gene regulatory networks with bayesian networks by combining expression data with multiple sources of prior knowledge
    • Werhli, A., Husmeier, D. (2007). Reconstructing gene regulatory networks with bayesian networks by combining expression data with multiple sources of prior knowledge. Statistical Applications in Genetics and Molecular Biology 6.
    • (2007) Statistical Applications in Genetics and Molecular Biology , pp. 6
    • Werhli, A.1    Husmeier, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.