-
2
-
-
33750253118
-
A Probabilistic Framework for Dialog Simulation and Optimal Strategy Learning
-
O. Pietquin and T. Dutoit, "A Probabilistic Framework for Dialog Simulation and Optimal Strategy Learning," IEEE Trans. Speech and Audio Processing, vol.14, no.2, pp. 589-599, 2005.
-
(2005)
IEEE Trans. Speech and Audio Processing
, vol.14
, Issue.2
, pp. 589-599
-
-
Pietquin, O.1
Dutoit, T.2
-
3
-
-
24044458805
-
The structure of bayes networks for visual recognition
-
T.L.R. Shacter, L.N. Kanal, and J.F. Lemmer, eds.
-
J. Agosta, "The Structure of Bayes Networks for Visual Recognition," Uncertainty in Artificial Intelligence, T.L.R. Shacter, L.N. Kanal, and J.F. Lemmer, eds., vol.4, pp. 397-405, 1990.
-
(1990)
Uncertainty in Artificial Intelligence
, vol.4
, pp. 397-405
-
-
Agosta, J.1
-
4
-
-
84987031663
-
Probabilistic similarity networks
-
D. Heckerman, "Probabilistic Similarity Networks," Networks, vol.20, pp. 607-636, 1990.
-
(1990)
Networks
, vol.20
, pp. 607-636
-
-
Heckerman, D.1
-
5
-
-
0034215972
-
Constructing bayesian networks for medical diagnosis from incomplete and partially correct statistics
-
D. Nikovski, "Constructing Bayesian Networks for Medical Diagnosis from Incomplete and Partially Correct Statistics," IEEE Trans. Knowledge and Data Eng., vol.12, pp. 509-516, 2000.
-
(2000)
IEEE Trans. Knowledge and Data Eng.
, vol.12
, pp. 509-516
-
-
Nikovski, D.1
-
6
-
-
0033707946
-
Using Bayesian networks to analyze expression data
-
DOI 10.1089/106652700750050961
-
N. Friedman, M. Linial, I. Nachman, and D. Pe'er, "Using Bayesian Networks to Analyze Expression Data," J. Computational Biology, vol.7, pp. 601-620, 2000. (Pubitemid 30944025)
-
(2000)
Journal of Computational Biology
, vol.7
, Issue.3-4
, pp. 601-620
-
-
Friedman, N.1
Linial, M.2
Nachman, I.3
Pe'er, D.4
-
7
-
-
12344259602
-
Advances to bayesian network inference for generating causal networks from observational biological data
-
J. Yu, V. Smith, P. Wang, A. Hartemink, and E. Jarvis, "Advances to Bayesian Network Inference for Generating Causal Networks from Observational Biological Data," Bioinformatics, vol.20, pp. 3594-3603, 2004.
-
(2004)
Bioinformatics
, vol.20
, pp. 3594-3603
-
-
Yu, J.1
Smith, V.2
Wang, P.3
Hartemink, A.4
Jarvis, E.5
-
8
-
-
0542396542
-
Independency relationships and learning algorithms for singly connected networks
-
L. de Campos, "Independency Relationships and Learning Algorithms for Singly Connected Networks," J. Experimental and Theoretical Artificial Intelligence, vol.10, pp. 511-549, 1998. (Pubitemid 128475478)
-
(1998)
Journal of Experimental and Theoretical Artificial Intelligence
, vol.10
, Issue.4
, pp. 511-549
-
-
De Campos, L.M.1
-
9
-
-
0034174383
-
A New Approach for Learning Belief Networks Using Independence Criteria
-
L. de Campos and J. Huete, "A New Approach for Learning Belief Networks Using Independence Criteria," Int'l J. Approximate Reasoning, vol.24, pp. 11-37, 2000.
-
(2000)
Int'l J. Approximate Reasoning
, vol.24
, pp. 11-37
-
-
De Campos, L.1
Huete, J.2
-
11
-
-
0028482006
-
Learning Bayesian Belief Networks. An Approach Based on the MDL Principle
-
W. Lam and F. Bacchus, "Learning Bayesian Belief Networks. An Approach Based on the MDL Principle," Computational Intelligence, vol.10, pp. 269-293, 1994.
-
(1994)
Computational Intelligence
, vol.10
, pp. 269-293
-
-
Lam, W.1
Bacchus, F.2
-
12
-
-
34249832377
-
A Bayesian Method for the Induction of Probabilistic Networks from Data
-
G. Cooper and E. Herskovits, "A Bayesian Method for the Induction of Probabilistic Networks from Data," Machine Learning, vol.9, pp. 309-347, 1992.
-
(1992)
Machine Learning
, vol.9
, pp. 309-347
-
-
Cooper, G.1
Herskovits, E.2
-
13
-
-
34249761849
-
Learning bayesian networks: The combination of knowledge and statistical data
-
D. Heckerman, D. Geiger, and D. Chickering, "Learning Bayesian Networks: The Combination of Knowledge and Statistical Data," Machine Learning, vol.20, pp. 197-243, 1995.
-
(1995)
Machine Learning
, vol.20
, pp. 197-243
-
-
Heckerman, D.1
Geiger, D.2
Chickering, D.3
-
14
-
-
0003338515
-
Causation, Prediction and Search
-
Springer
-
P. Spirtes, C. Glymour, and R. Scheines, "Causation, Prediction and Search," Lecture Notes in Statistics 81, Springer, 1993.
-
(1993)
Lecture Notes in Statistics
, vol.81
-
-
Spirtes, P.1
Glymour, C.2
Scheines, R.3
-
15
-
-
0000243504
-
Graphical and recursive models for contingence tables
-
N. Wermuth and S. Lauritzen, "Graphical and Recursive Models for Contingence Tables," Biometrika, vol.72, pp. 537-552, 1983.
-
(1983)
Biometrika
, vol.72
, pp. 537-552
-
-
Wermuth, N.1
Lauritzen, S.2
-
16
-
-
0031185530
-
On the use of independence relationships for learning simplified brief networks
-
L. Campos and J. Huete, "On the Use of Independence Relationships for Learning Simplified Brief Networks," Int'l J. Intelligent Systems, vol.12, pp. 495-522, 1997.
-
(1997)
Int'l J. Intelligent Systems
, vol.12
, pp. 495-522
-
-
Campos, L.1
Huete, J.2
-
18
-
-
0027541725
-
Learning simple causal structures
-
D. Geiger, A. Paz, and J. Pearl, "Learning Simple Causal Structures," Int'l J. Intelligent Systems, vol.8, pp. 231-247, 1993.
-
(1993)
Int'l J. Intelligent Systems
, vol.8
, pp. 231-247
-
-
Geiger, D.1
Paz, A.2
Pearl, J.3
-
22
-
-
0042496103
-
Learning equivalence classes on bayesian-network structures
-
D. Chickering, "Learning Equivalence Classes on Bayesian-Network Structures," J. Machine Learning Research, vol.2, pp. 445-498, 2002.
-
(2002)
J. Machine Learning Research
, vol.2
, pp. 445-498
-
-
Chickering, D.1
-
23
-
-
0042967741
-
Optimal structure identification with greedy search
-
D. Chickering, "Optimal Structure Identification with Greedy Search," J. Machine Learning Research, vol.3, pp. 507-554, 2002.
-
(2002)
J. Machine Learning Research
, vol.3
, pp. 507-554
-
-
Chickering, D.1
-
24
-
-
0030124955
-
A guide to the literature on learning probabilistic networks from data
-
W. Buntine, "A Guide to the Literature on Learning Probabilistic Networks from Data," IEEE Trans. Knowledge and Data Eng., vol.8, pp. 195-210, 1996.
-
(1996)
IEEE Trans. Knowledge and Data Eng.
, vol.8
, pp. 195-210
-
-
Buntine, W.1
-
25
-
-
0037262841
-
Being bayesian about network structure: A bayesian approach to structure discovery in bayesian networks
-
N. Friedman and D. Koller, "Being Bayesian about Network Structure: A Bayesian Approach to Structure Discovery in Bayesian Networks," Machine Learning, vol.50, pp. 95-125, 2003.
-
(2003)
Machine Learning
, vol.50
, pp. 95-125
-
-
Friedman, N.1
Koller, D.2
-
27
-
-
0003021797
-
A Construction of bayesian networks from databases based on an MDL principle
-
J. Suzuki, "A Construction of Bayesian Networks from Databases Based on an MDL Principle," Proc. Ninth Conf. Uncertainty in Artificial Intelligence, pp. 266-273, 1993.
-
(1993)
Proc. Ninth Conf. Uncertainty in Artificial Intelligence
, pp. 266-273
-
-
Suzuki, J.1
-
28
-
-
85017343247
-
Belief networks construction using the minimum description length principle
-
R. Bouckaert, "Belief Networks Construction Using the Minimum Description Length Principle," Lecture Notes in Computer Science 747, pp. 41-48, 1993.
-
(1993)
Lecture Notes in Computer Science
, vol.747
, pp. 41-48
-
-
Bouckaert, R.1
-
30
-
-
84933530882
-
Approximating discrete probability distributions with dependence trees
-
C. Chow and C. Liu, "Approximating Discrete Probability Distributions with Dependence Trees," IEEE Trans. Information Theory, vol.14, pp. 462-467, 1968.
-
(1968)
IEEE Trans. Information Theory
, vol.14
, pp. 462-467
-
-
Chow, C.1
Liu, C.2
-
31
-
-
31844439894
-
Exact bayesian structure discovery in bayesian networks
-
M. Koivisto and K. Sood, "Exact Bayesian Structure Discovery in Bayesian Networks," J. Machine Learning Research, vol.5, pp. 549-573, 2004.
-
(2004)
J. Machine Learning Research
, vol.5
, pp. 549-573
-
-
Koivisto, M.1
Sood, K.2
-
32
-
-
0001019707
-
Learning bayesian networks is np-complete
-
V, D. Fisher and H. Lenz, eds., Springer
-
D. Chickering, "Learning Bayesian Networks Is NP-Complete," Learning from Data: Artificial Intelligence and Statistics V, D. Fisher and H. Lenz, eds., pp. 121-130, Springer, 1996.
-
(1996)
Learning from Data: Artificial Intelligence and Statistics
, pp. 121-130
-
-
Chickering, D.1
-
33
-
-
33646107783
-
Large-sample learning of bayesian networks is NP-Hard
-
D. Chickering, D. Heckerman, and C. Meek, "Large-Sample Learning of Bayesian Networks Is NP-Hard," J. Machine Learning Research, vol.5, pp. 1287-1330, 2004.
-
(2004)
J. Machine Learning Research
, vol.5
, pp. 1287-1330
-
-
Chickering, D.1
Heckerman, D.2
Meek, C.3
-
34
-
-
21244484641
-
Searching for bayesian network structures in the space of restricted acyclic partially directed graphs
-
S. Acid and L. de Campos, "Searching for Bayesian Network Structures in the Space of Restricted Acyclic Partially Directed Graphs," J. Artificial Intelligence Research, vol.18, pp. 445-490, 2003.
-
(2003)
J. Artificial Intelligence Research
, vol.18
, pp. 445-490
-
-
Acid, S.1
De Campos, L.2
-
35
-
-
2542465947
-
On inclusion-driven learning of bayesian networks
-
R. Castelo and T. Kocka, "On Inclusion-Driven Learning of Bayesian Networks," J. Machine Learning Research, vol.4, pp. 527-574, 2003.
-
(2003)
J. Machine Learning Research
, vol.4
, pp. 527-574
-
-
Castelo, R.1
Kocka, T.2
-
36
-
-
0030192667
-
Learning bayesian network structures by searching for the best ordering with genetic algorithms
-
P. Larranaga, C. Kuijpers, R. Murga, and Y. Yurramendi, "Learning Bayesian Network Structures by Searching for the Best Ordering with Genetic Algorithms," IEEE Trans. Systems, Man, and Cybernetics, vol.26, pp. 487-493, 1996.
-
(1996)
IEEE Trans. Systems, Man, and Cybernetics
, vol.26
, pp. 487-493
-
-
Larranaga, P.1
Kuijpers, C.2
Murga, R.3
Yurramendi, Y.4
-
37
-
-
0030245966
-
Structure learning of bayesian networks by genetic algorithms: A performance analysis of control parameters
-
P. Larranaga, M. Poza, Y. Yurramendi, R. Murga, and C. Kuijpers, "Structure Learning of Bayesian Networks by Genetic Algorithms: A Performance Analysis of Control Parameters," IEEE Trans. Pattern Analysis and Machine Intelligence, vol.18, pp. 912-926, 1996.
-
(1996)
IEEE Trans. Pattern Analysis and Machine Intelligence
, vol.18
, pp. 912-926
-
-
Larranaga, P.1
Poza, M.2
Yurramendi, Y.3
Murga, R.4
Kuijpers, C.5
-
39
-
-
21844520724
-
Bayesian graphical models for discrete data
-
D. Madigan and J. York, "Bayesian Graphical Models for Discrete Data," Int'l Statistical Rev., vol.63, pp. 215-232, 1995.
-
(1995)
Int'l Statistical Rev.
, vol.63
, pp. 215-232
-
-
Madigan, D.1
York, J.2
-
40
-
-
0004202337
-
An Introduction to Bayesian Networks
-
F. Jensen, An Introduction to Bayesian Networks. UCL Press, 1996.
-
(1996)
UCL Press
-
-
Jensen, F.1
-
43
-
-
0001006209
-
Local computations with probabilities on graphical structures and their application on expert systems
-
S. Lauritzen and D. Spiegelhalter, "Local Computations with Probabilities on Graphical Structures and Their Application on Expert Systems," J. Royal Statistical Soc., vol.50, pp. 157-224, 1988.
-
(1988)
J. Royal Statistical Soc.
, vol.50
, pp. 157-224
-
-
Lauritzen, S.1
Spiegelhalter, D.2
-
44
-
-
0002460150
-
The ALARM Monitoring system: A case study with two probabilistic inference techniques for belief networks
-
I. Beinlich, G. Suermondt, R. Chavez, and G. Cooper, "The ALARM Monitoring System: A Case Study with Two Probabilistic Inference Techniques for Belief Networks," Proc. Second European Conf. Artificial Intelligence in Medicine, 1989.
-
(1989)
Proc. Second European Conf. Artificial Intelligence in Medicine
-
-
Beinlich, I.1
Suermondt, G.2
Chavez, R.3
Cooper, G.4
-
45
-
-
0030095171
-
Hailfinder: A Bayesian system for forecasting severe weather
-
DOI 10.1016/0169-2070(95)00664-8
-
B. Abramson, J. Brown, W. Edwards, A. Murphy, and R. Winkler, "Hailfinder: A Bayesian System for Forecasting Severe Weather," Int'l J. Forecasting, vol.12, pp. 57-71, 1996. (Pubitemid 126160223)
-
(1996)
International Journal of Forecasting
, vol.12
, Issue.1
, pp. 57-71
-
-
Abramson, B.1
Brown, J.2
Edwards, W.3
Murphy, A.4
Winkler, R.L.5
-
46
-
-
0036567524
-
Learning bayesian networks from data: An information-theory based approach
-
J. Cheng, R. Grenier, J. Kelly, D. Bell, and W. Liu, "Learning Bayesian Networks from Data: An Information-Theory Based Approach," Artificial Intelligence, vol.137, pp. 43-90, 2002.
-
(2002)
Artificial Intelligence
, vol.137
, pp. 43-90
-
-
Cheng, J.1
Grenier, R.2
Kelly, J.3
Bell, D.4
Liu, W.5
-
47
-
-
70350293646
-
-
http://bnt.sourceforge.net/, 2006.
-
(2006)
-
-
|