-
1
-
-
0035902108
-
Genome maintenance mechanisms for preventing cancer
-
Hoeijmakers JH (2001) Genome maintenance mechanisms for preventing cancer. Nature 411:366-374.
-
(2001)
Nature
, vol.411
, pp. 366-374
-
-
Hoeijmakers, J.H.1
-
2
-
-
35348813734
-
Bacterial DNA repair genes and their eukaryotic homologues: 1. Mutations in genes involved in base excision repair (BER) and DNA-end processors and their implication in mutagenesis and human disease
-
Krwawicz J, Arczewska KD, Speina E, Maciejewska A, Grzesiuk E (2007) Bacterial DNA repair genes and their eukaryotic homologues: 1. Mutations in genes involved in base excision repair (BER) and DNA-end processors and their implication in mutagenesis and human disease. Acta Biochim Pol 54:413-434.
-
(2007)
Acta Biochim Pol
, vol.54
, pp. 413-434
-
-
Krwawicz, J.1
Arczewska, K.D.2
Speina, E.3
Maciejewska, A.4
Grzesiuk, E.5
-
3
-
-
44449112688
-
Base excision DNA repair
-
Zharkov DO (2008) Base excision DNA repair. Cell Mol Life Sci 65:1544-1565.
-
(2008)
Cell Mol Life Sci
, vol.65
, pp. 1544-1565
-
-
Zharkov, D.O.1
-
6
-
-
23444444813
-
DNA polymerase lambda mediates a back-up base excision repair activity in extracts of mouse embryonic fibroblasts
-
Braithwaite EK, et al. (2005) DNA polymerase lambda mediates a back-up base excision repair activity in extracts of mouse embryonic fibroblasts. J Biol Chem 280:18469-18475.
-
(2005)
J Biol Chem
, vol.280
, pp. 18469-18475
-
-
Braithwaite, E.K.1
-
7
-
-
0035860767
-
Identification of an intrinsic 5′-deoxyribose-5-phosphate lyase activity in human DNA polymerase lambda: A possible role in base excision repair
-
García-Díaz M, Bebenek K, Kunkel TA, Blanco L (2001) Identification of an intrinsic 5′-deoxyribose-5-phosphate lyase activity in human DNA polymerase lambda: A possible role in base excision repair. J Biol Chem 276:34659-34663.
-
(2001)
J Biol Chem
, vol.276
, pp. 34659-34663
-
-
García-Díaz, M.1
Bebenek, K.2
Kunkel, T.A.3
Blanco, L.4
-
8
-
-
0029028964
-
Excision of deoxyribose phosphate residues by DNA polymerase beta during DNA repair
-
Matsumoto Y, Kim K (1995) Excision of deoxyribose phosphate residues by DNA polymerase beta during DNA repair. Science 269:699-702.
-
(1995)
Science
, vol.269
, pp. 699-702
-
-
Matsumoto, Y.1
Kim, K.2
-
9
-
-
0032516831
-
Mammalian abasic site base excision repair. Identification of the reaction sequence and rate-determining steps
-
Srivastava DK, et al. (1998) Mammalian abasic site base excision repair. Identification of the reaction sequence and rate-determining steps. J Biol Chem 273:21203-21209.
-
(1998)
J Biol Chem
, vol.273
, pp. 21203-21209
-
-
Srivastava, D.K.1
-
10
-
-
56949099059
-
Characterization of a Bacillus subtilis 64-kDa DNA polymerase X potentially involved in DNA repair
-
Baños B, Lázaro JM, Villar L, Salas M, de Vega M (2008) Characterization of a Bacillus subtilis 64-kDa DNA polymerase X potentially involved in DNA repair. J Mol Biol 384:1019-1028.
-
(2008)
J Mol Biol
, vol.384
, pp. 1019-1028
-
-
Baños, B.1
Lázaro, J.M.2
Villar, L.3
Salas, M.4
De Vega, M.5
-
11
-
-
0032529457
-
Phosphoesterase domains associated with DNA polymerases of diverse origins
-
Aravind L, Koonin EV (1998) Phosphoesterase domains associated with DNA polymerases of diverse origins. Nucleic Acids Res 26:3746-3752.
-
(1998)
Nucleic Acids Res
, vol.26
, pp. 3746-3752
-
-
Aravind, L.1
Koonin, E.V.2
-
12
-
-
54949112553
-
Editing ofmisaligned 3′-termini by an intrinsic 3′-5′ exonuclease activity residing in the PHP domain of a family X DNA polymerase
-
Baños B, Lázaro JM, Villar L, Salas M, de VegaM(2008) Editing ofmisaligned 3′-termini by an intrinsic 3′-5′ exonuclease activity residing in the PHP domain of a family X DNA polymerase. Nucleic Acids Res 36:5736-5749.
-
(2008)
Nucleic Acids Res
, vol.36
, pp. 5736-5749
-
-
Baños, B.1
Lázaro, J.M.2
Villar, L.3
Salas, M.4
De Vega, M.5
-
13
-
-
66449096362
-
The family X DNA polymerase from Deinococcus radiodurans adopts a non-standard extended conformation
-
Leulliot N, et al. (2009) The family X DNA polymerase from Deinococcus radiodurans adopts a non-standard extended conformation. J Biol Chem 284:11992-11999.
-
(2009)
J Biol Chem
, vol.284
, pp. 11992-11999
-
-
Leulliot, N.1
-
14
-
-
64549104150
-
Characterization of DNA polymerase X from Thermus thermophilus HB8 reveals the POLXc and PHP domains are both required for 3′-5' exonuclease activity
-
Nakane S, Nakagawa N, Kuramitsu S, Masui R (2009) Characterization of DNA polymerase X from Thermus thermophilus HB8 reveals the POLXc and PHP domains are both required for 3′-5' exonuclease activity. Nucleic Acids Res 37:2037-2052.
-
(2009)
Nucleic Acids Res
, vol.37
, pp. 2037-2052
-
-
Nakane, S.1
Nakagawa, N.2
Kuramitsu, S.3
Masui, R.4
-
15
-
-
69949112356
-
DNA polymerase X from Deinococcus radiodurans implicated in bacterial tolerance to DNA damage is characterized as a short patch base excision repair polymerase
-
Khairnar NP, Misra HS (2009) DNA polymerase X from Deinococcus radiodurans implicated in bacterial tolerance to DNA damage is characterized as a short patch base excision repair polymerase. Microbiology 155:3005-3014.
-
(2009)
Microbiology
, vol.155
, pp. 3005-3014
-
-
Khairnar, N.P.1
Misra, H.S.2
-
16
-
-
0037424613
-
DNA polymerase X of African swine fever virus: Insertion fidelity on gapped DNA substrates and AP lyase activity support a role in base excision repair of viral DNA
-
Garcia-Escudero R, Garcia-Diaz M, Salas ML, Blanco L, Salas J (2003) DNA polymerase X of African swine fever virus: Insertion fidelity on gapped DNA substrates and AP lyase activity support a role in base excision repair of viral DNA. J Mol Biol 326:1403-1412.
-
(2003)
J Mol Biol
, vol.326
, pp. 1403-1412
-
-
Garcia-Escudero, R.1
Garcia-Diaz, M.2
Salas, M.L.3
Blanco, L.4
Salas, J.5
-
17
-
-
0029892846
-
Evidence for an imino intermediate in the DNA polymerase β deoxyribose phosphate excision reaction
-
DOI 10.1074/jbc.271.30.17811
-
Piersen CE, Prasad R, Wilson SH, Lloyd RS (1996) Evidence for an imino intermediate in the DNA polymerase beta deoxyribose phosphate excision reaction. J Biol Chem 271:17811-17815. (Pubitemid 26250757)
-
(1996)
Journal of Biological Chemistry
, vol.271
, Issue.30
, pp. 17811-17815
-
-
Piersen, C.E.1
Prasad, R.2
Wilson, S.H.3
Lloyd, R.S.4
-
18
-
-
0032510962
-
Human DNA polymerase beta deoxyribose phosphate lyase. Substrate specificity and catalytic mechanism
-
Prasad R, Beard WA, Strauss PR, Wilson SH (1998) Human DNA polymerase beta deoxyribose phosphate lyase. Substrate specificity and catalytic mechanism. J Biol Chem 273:15263-15270.
-
(1998)
J Biol Chem
, vol.273
, pp. 15263-15270
-
-
Prasad, R.1
Beard, W.A.2
Strauss, P.R.3
Wilson, S.H.4
-
19
-
-
27844501168
-
Molecular and biological roles of Ape1 protein in mammalian base excision repair
-
Demple B, Sung J-S (2005) Molecular and biological roles of Ape1 protein in mammalian base excision repair. DNA Repair 4:1442-1449.
-
(2005)
DNA Repair
, vol.4
, pp. 1442-1449
-
-
Demple, B.1
Sung, J.-S.2
-
20
-
-
0023664684
-
Oligodeoxynucleotides containing synthetic abasic sites. Model substrates for DNA polymerases and apurinic/apyrimidinic endonucleases
-
Takeshita M, Chang CN, Johnson F, Will S, Grollman AP (1987) Oligodeoxynucleotides containing synthetic abasic sites. Model substrates for DNA polymerases and apurinic/ apyrimidinic endonucleases. J Biol Chem 262:10171-10179.
-
(1987)
J Biol Chem
, vol.262
, pp. 10171-10179
-
-
Takeshita, M.1
Chang, C.N.2
Johnson, F.3
Will, S.4
Grollman, A.P.5
-
21
-
-
34848926037
-
Crystal structure and DNA repair activities of the AP endonuclease from Leishmania major
-
Vidal AE, et al. (2007) Crystal structure and DNA repair activities of the AP endonuclease from Leishmania major. J Mol Biol 373:827-838.
-
(2007)
J Mol Biol
, vol.373
, pp. 827-838
-
-
Vidal, A.E.1
-
22
-
-
33748146034
-
The structure of T. Aquaticus DNA polymerase III is distinct from eukaryotic replicative DNA polymerases
-
Bailey S, Wing RA, Steitz TA (2006) The structure of T. aquaticus DNA polymerase III is distinct from eukaryotic replicative DNA polymerases. Cell 126:893-904.
-
(2006)
Cell
, vol.126
, pp. 893-904
-
-
Bailey, S.1
Wing, R.A.2
Steitz, T.A.3
-
23
-
-
33748146483
-
Crystal structure of the catalytic alpha subunit of E. coli replicative DNA polymerase III
-
Lamers MH, Georgescu RE, Lee SG, O'Donnell M, Kuriyan J (2006) Crystal structure of the catalytic alpha subunit of E. coli replicative DNA polymerase III. Cell 126:881-892.
-
(2006)
Cell
, vol.126
, pp. 881-892
-
-
Lamers, M.H.1
Georgescu, R.E.2
Lee, S.G.3
O'Donnell, M.4
Kuriyan, J.5
-
24
-
-
0037402602
-
Crystal structure of the Escherichia coli YcdX protein reveals a trinuclear zinc active site
-
DOI 10.1002/prot.10352
-
Teplyakov A, et al. (2003) Crystal structure of the Escherichia coli YcdX protein reveals a trinuclear zinc active site. Proteins 51:315-318. (Pubitemid 36397764)
-
(2003)
Proteins: Structure, Function and Genetics
, vol.51
, Issue.2
, pp. 315-318
-
-
Teplyakov, A.1
Obmolova, G.2
Khil, P.P.3
Howard, A.J.4
Camerini-Otero, R.D.5
Gilliland, G.L.6
-
25
-
-
43249130475
-
DNA apurinic-apyrimidinic site binding and excision by endonuclease IV
-
Garcin ED, et al. (2008) DNA apurinic-apyrimidinic site binding and excision by endonuclease IV. Nat Struct Mol Biol 15:515-522.
-
(2008)
Nat Struct Mol Biol
, vol.15
, pp. 515-522
-
-
Garcin, E.D.1
-
26
-
-
0033529716
-
Structure of the DNA repair enzyme endonuclease IV and its DNA complex: Double-nucleotide flipping at abasic sites and three-metal-ion catalysis
-
Hosfield DJ, Guan Y, Haas BJ, Cunningham RP, Tainer JA (1999) Structure of the DNA repair enzyme endonuclease IV and its DNA complex: Double-nucleotide flipping at abasic sites and three-metal-ion catalysis. Cell 98:397-408.
-
(1999)
Cell
, vol.98
, pp. 397-408
-
-
Hosfield, D.J.1
Guan, Y.2
Haas, B.J.3
Cunningham, R.P.4
Tainer, J.A.5
-
27
-
-
75949110330
-
Coupling of the nucleotide incision and 3′ → 5′ exonuclease activities in Escherichia coli endonuclease IV: Structural and genetic evidences
-
Golan G, Ishchenko AA, Khassenov B, Shoham G, SaparbaevMK (2009) Coupling of the nucleotide incision and 3′ → 5′ exonuclease activities in Escherichia coli endonuclease IV: Structural and genetic evidences. Mutat Res 685:70-79.
-
(2009)
Mutat Res
, vol.685
, pp. 70-79
-
-
Golan, G.1
Ishchenko, A.A.2
Khassenov, B.3
Shoham, G.4
Saparbaev, M.K.5
-
28
-
-
22544450152
-
The 3′ → 5′ exonuclease of Apn1 provides an alternative pathway to repair 7, 8-dihydro-8-oxodeoxyguanosine in Saccharomyces cerevisiae
-
Ishchenko AA, Yang X, Ramotar D, Saparbaev M (2005) The 3′ → 5′ exonuclease of Apn1 provides an alternative pathway to repair 7, 8-dihydro-8-oxodeoxyguanosine in Saccharomyces cerevisiae. Mol Cell Biol 25:6380-6390.
-
(2005)
Mol Cell Biol
, vol.25
, pp. 6380-6390
-
-
Ishchenko, A.A.1
Yang, X.2
Ramotar, D.3
Saparbaev, M.4
-
29
-
-
0037474210
-
Characterization of an endonuclease IV 3′-5′ exonuclease activity
-
Kerins SM, Collins R, McCarthy TV (2003) Characterization of an endonuclease IV 3′-5′ exonuclease activity. J Biol Chem 278:3048-3054.
-
(2003)
J Biol Chem
, vol.278
, pp. 3048-3054
-
-
Kerins, S.M.1
Collins, R.2
McCarthy, T.V.3
-
30
-
-
0348140585
-
Abasic sites in DNA: Repair and biological consequences in Saccharomyces cerevisiae
-
Boiteux S, Guillet M (2004) Abasic sites in DNA: Repair and biological consequences in Saccharomyces cerevisiae. DNA Repair 3:1-12.
-
(2004)
DNA Repair
, vol.3
, pp. 1-12
-
-
Boiteux, S.1
Guillet, M.2
-
31
-
-
0017161630
-
Methyl methane sulfonate-sensitive mutant of Escherichia coli deficient in an endonuclease specific for apurinic sites in deoxyribonucleic acid
-
Ljungquist S, Lindahl T, Howard-Flanders P (1976) Methyl methane sulfonate-sensitive mutant of Escherichia coli deficient in an endonuclease specific for apurinic sites in deoxyribonucleic acid. J Bacteriol 126:646-653.
-
(1976)
J Bacteriol
, vol.126
, pp. 646-653
-
-
Ljungquist, S.1
Lindahl, T.2
Howard-Flanders, P.3
-
32
-
-
33947181044
-
AP endonuclease paralogues with distinct activities in DNA repair and bacterial pathogenesis
-
Carpenter EP, et al. (2007) AP endonuclease paralogues with distinct activities in DNA repair and bacterial pathogenesis. EMBO J 26:1363-1372.
-
(2007)
EMBO J.
, vol.26
, pp. 1363-1372
-
-
Carpenter, E.P.1
-
33
-
-
0034531986
-
Second human protein with homology to the Escherichia coli abasic endonuclease exonuclease III
-
Hadi MZ, Wilson DM, 3rd (2000) Second human protein with homology to the Escherichia coli abasic endonuclease exonuclease III. Environ Mol Mutagen 36:312-324.
-
(2000)
Environ Mol Mutagen
, vol.36
, pp. 312-324
-
-
Hadi, M.Z.1
Wilson III, D.M.2
-
34
-
-
0041836116
-
YqfS from Bacillus subtilis is a spore protein and a new functional member of the type IV apurinic/apyrimidinic-endonuclease family
-
Salas-Pacheco JM, Urtiz-Estrada N, Martínez-Cadena G, Yasbin RE, Pedraza-Reyes M (2003) YqfS from Bacillus subtilis is a spore protein and a new functional member of the type IV apurinic/apyrimidinic-endonuclease family. J Bacteriol 185:5380-5390.
-
(2003)
J Bacteriol
, vol.185
, pp. 5380-5390
-
-
Salas-Pacheco, J.M.1
Urtiz-Estrada, N.2
Martínez-Cadena, G.3
Yasbin, R.E.4
Pedraza-Reyes, M.5
-
35
-
-
27144549864
-
Role of the Nfo (YqfS) and ExoA apurinic/apyrimidinic endonucleases in protecting Bacillus subtilis spores from DNA damage
-
Salas-Pacheco JM, Setlow B, Setlow P, Pedraza-Reyes M (2005) Role of the Nfo (YqfS) and ExoA apurinic/apyrimidinic endonucleases in protecting Bacillus subtilis spores from DNA damage. J Bacteriol 187:7374-7381.
-
(2005)
J Bacteriol
, vol.187
, pp. 7374-7381
-
-
Salas-Pacheco, J.M.1
Setlow, B.2
Setlow, P.3
Pedraza-Reyes, M.4
-
36
-
-
34247245102
-
A novel human AP endonuclease with conserved zinc-finger-like motifs involved in DNA strand break responses
-
Kanno S, et al. (2007) A novel human AP endonuclease with conserved zinc-finger-like motifs involved in DNA strand break responses. EMBO J 26:2094-2103.
-
(2007)
EMBO J.
, vol.26
, pp. 2094-2103
-
-
Kanno, S.1
-
37
-
-
1842735418
-
Human AP endonuclease (APE1) demonstrates endonucleolytic activity against AP sites in single-stranded DNA
-
Marenstein DR, Wilson DM, 3rd, Teebor GW (2004) Human AP endonuclease (APE1) demonstrates endonucleolytic activity against AP sites in single-stranded DNA. DNA Repair 3:527-533.
-
(2004)
DNA Repair
, vol.3
, pp. 527-533
-
-
Marenstein, D.R.1
Wilson III, D.M.2
Teebor, G.W.3
-
38
-
-
27844477712
-
Chlamydia pneumoniae AP endonuclease IV could cleave AP sites of double- and single-stranded DNA
-
Liu X, Liu J (2005) Chlamydia pneumoniae AP endonuclease IV could cleave AP sites of double- and single-stranded DNA. Biochim Biophys Acta 1753:217-225.
-
(2005)
Biochim Biophys Acta
, vol.1753
, pp. 217-225
-
-
Liu, X.1
Liu, J.2
-
39
-
-
0035834708
-
Definitive identification of mammalian 5-hydroxymethyluracil DNA N-glycosylase activity as SMUG1
-
Boorstein RJ, et al. (2001) Definitive identification of mammalian 5-hydroxymethyluracil DNA N-glycosylase activity as SMUG1. J Biol Chem 276:41991-41997.
-
(2001)
J Biol Chem
, vol.276
, pp. 41991-41997
-
-
Boorstein, R.J.1
-
40
-
-
0347379928
-
Repair of oxidized bases in DNA bubble structures by human DNA glycosylases NEIL1 and NEIL2
-
Dou H, Mitra S, Hazra TK (2003) Repair of oxidized bases in DNA bubble structures by human DNA glycosylases NEIL1 and NEIL2. J Biol Chem 278:49679-49684.
-
(2003)
J Biol Chem
, vol.278
, pp. 49679-49684
-
-
Dou, H.1
Mitra, S.2
Hazra, T.K.3
-
41
-
-
0038074420
-
The versatile thymine DNA-glycosylase: A comparative characterization of the human, Drosophila and fission yeast orthologs
-
Hardeland U, Bentele M, Jiricny J, Schar P (2003) The versatile thymine DNA-glycosylase: A comparative characterization of the human, Drosophila and fission yeast orthologs. Nucleic Acids Res 31:2261-2271.
-
(2003)
Nucleic Acids Res
, vol.31
, pp. 2261-2271
-
-
Hardeland, U.1
Bentele, M.2
Jiricny, J.3
Schar, P.4
-
42
-
-
0033399115
-
Singlestranded oligodeoxyribonucleotides are substrates of Fpg protein from Escherichia coli
-
Ishchenko AA, Bulychev NV, Maksakova GA, Johnson F, Nevinsky GA (1999) Singlestranded oligodeoxyribonucleotides are substrates of Fpg protein from Escherichia coli. IUBMB Life 48:613-618.
-
(1999)
IUBMB Life
, vol.48
, pp. 613-618
-
-
Ishchenko, A.A.1
Bulychev, N.V.2
Maksakova, G.A.3
Johnson, F.4
Nevinsky, G.A.5
-
43
-
-
18644363009
-
HUNG2 is the major repair enzyme for removal of uracil from U-A matches, U-G mismatches, and U in single-stranded DNA, with hSMUG1 as a broad specificity backup
-
Kavli B, et al. (2002) hUNG2 is the major repair enzyme for removal of uracil from U-A matches, U-G mismatches, and U in single-stranded DNA, with hSMUG1 as a broad specificity backup. J Biol Chem 277:39926-39936.
-
(2002)
J Biol Chem
, vol.277
, pp. 39926-39936
-
-
Kavli, B.1
-
44
-
-
0030806246
-
Contrasting effects of single stranded DNA binding protein on the activity of uracil DNA glycosylase from Escherichia coli towards different DNA substrates
-
Kumar NV, Varshney U (1997) Contrasting effects of single stranded DNA binding protein on the activity of uracil DNA glycosylase from Escherichia coli towards different DNA substrates. Nucleic Acids Res 25:2336-2343.
-
(1997)
Nucleic Acids Res
, vol.25
, pp. 2336-2343
-
-
Kumar, N.V.1
Varshney, U.2
-
45
-
-
0036829538
-
A back-up glycosylase in Nth1 knock-out mice is a functional Nei (endonuclease VIII) homologue
-
Takao M, et al. (2002) A back-up glycosylase in Nth1 knock-out mice is a functional Nei (endonuclease VIII) homologue. J Biol Chem 277:42205-42213.
-
(2002)
J Biol Chem
, vol.277
, pp. 42205-42213
-
-
Takao, M.1
-
46
-
-
0022405045
-
An RNA polymerase II transcription factor binds to an upstream element in the adenovirus major late promoter
-
Carthew RW, Chodosh LA, Sharp PA (1985) An RNA polymerase II transcription factor binds to an upstream element in the adenovirus major late promoter. Cell 43:439-448.
-
(1985)
Cell
, vol.43
, pp. 439-448
-
-
Carthew, R.W.1
Chodosh, L.A.2
Sharp, P.A.3
-
47
-
-
0021919826
-
A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes
-
Tabor S, Richardson CC (1985) A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci USA 82:1074-1078.
-
(1985)
Proc Natl Acad Sci USA
, vol.82
, pp. 1074-1078
-
-
Tabor, S.1
Richardson, C.C.2
|