-
1
-
-
0345255913
-
Structure, function, and regulation of budding yeast kinetochores
-
McAinsh A.D., et al. Structure, function, and regulation of budding yeast kinetochores. Annu. Rev. Cell Dev. Biol. 2003, 19:519-539.
-
(2003)
Annu. Rev. Cell Dev. Biol.
, vol.19
, pp. 519-539
-
-
McAinsh, A.D.1
-
2
-
-
34548481620
-
Structures and functions of yeast kinetochore complexes
-
Westermann S., et al. Structures and functions of yeast kinetochore complexes. Annu. Rev. Biochem. 2007, 76:563-591.
-
(2007)
Annu. Rev. Biochem.
, vol.76
, pp. 563-591
-
-
Westermann, S.1
-
3
-
-
15444372660
-
The yeast DASH complex forms closed rings on microtubules
-
Miranda J.J., et al. The yeast DASH complex forms closed rings on microtubules. Nat. Struct. Mol. Biol. 2005, 12:138-143.
-
(2005)
Nat. Struct. Mol. Biol.
, vol.12
, pp. 138-143
-
-
Miranda, J.J.1
-
4
-
-
77952378923
-
Reconstitution and functional analysis of kinetochore subcomplexes
-
Gestaut D.R., et al. Reconstitution and functional analysis of kinetochore subcomplexes. Methods Cell Biol. 2010, 95:641-656.
-
(2010)
Methods Cell Biol.
, vol.95
, pp. 641-656
-
-
Gestaut, D.R.1
-
5
-
-
17244363408
-
Molecular organization of the Ndc80 complex, an essential kinetochore component
-
Wei R.R., et al. Molecular organization of the Ndc80 complex, an essential kinetochore component. Proc. Natl. Acad. Sci. U. S. A. 2005, 102:5363-5367.
-
(2005)
Proc. Natl. Acad. Sci. U. S. A.
, vol.102
, pp. 5363-5367
-
-
Wei, R.R.1
-
6
-
-
12344251956
-
Formation of a dynamic kinetochore- microtubule interface through assembly of the Dam1 ring complex
-
Westermann S., et al. Formation of a dynamic kinetochore- microtubule interface through assembly of the Dam1 ring complex. Mol. Cell 2005, 17:277-290.
-
(2005)
Mol. Cell
, vol.17
, pp. 277-290
-
-
Westermann, S.1
-
7
-
-
33750202905
-
Microtubule depolymerization can drive poleward chromosome motion in fission yeast
-
Grishchuk E.L., McIntosh J.R. Microtubule depolymerization can drive poleward chromosome motion in fission yeast. EMBO J. 2006, 25:4888-4896.
-
(2006)
EMBO J.
, vol.25
, pp. 4888-4896
-
-
Grishchuk, E.L.1
McIntosh, J.R.2
-
8
-
-
0042978646
-
Centromere-associated protein-E is essential for the mammalian mitotic checkpoint to prevent aneuploidy due to single chromosome loss
-
Weaver B.A., et al. Centromere-associated protein-E is essential for the mammalian mitotic checkpoint to prevent aneuploidy due to single chromosome loss. J. Cell Biol. 2003, 162:551-563.
-
(2003)
J. Cell Biol.
, vol.162
, pp. 551-563
-
-
Weaver, B.A.1
-
9
-
-
31144471300
-
Chromosomes can congress to the metaphase plate before biorientation
-
Kapoor T.M., et al. Chromosomes can congress to the metaphase plate before biorientation. Science 2006, 311:388-391.
-
(2006)
Science
, vol.311
, pp. 388-391
-
-
Kapoor, T.M.1
-
10
-
-
34249699586
-
Kinetochore dynein is required for chromosome motion and congression independent of the spindle checkpoint
-
Yang Z., et al. Kinetochore dynein is required for chromosome motion and congression independent of the spindle checkpoint. Curr. Biol. 2007, 17:973-980.
-
(2007)
Curr. Biol.
, vol.17
, pp. 973-980
-
-
Yang, Z.1
-
11
-
-
0023837441
-
Polewards chromosome movement driven by microtubule depolymerization in vitro
-
Koshland D.E., et al. Polewards chromosome movement driven by microtubule depolymerization in vitro. Nature 1988, 331:499-504.
-
(1988)
Nature
, vol.331
, pp. 499-504
-
-
Koshland, D.E.1
-
12
-
-
0022099192
-
Theoretical problems related to the attachment of microtubules to kinetochores
-
Hill T.L. Theoretical problems related to the attachment of microtubules to kinetochores. Proc. Natl. Acad. Sci. U. S. A. 1985, 82:4404-4408.
-
(1985)
Proc. Natl. Acad. Sci. U. S. A.
, vol.82
, pp. 4404-4408
-
-
Hill, T.L.1
-
13
-
-
0025868445
-
Microtubule dynamics and microtubule caps: a time-resolved cryo-electron microscopy study
-
Mandelkow E.M., et al. Microtubule dynamics and microtubule caps: a time-resolved cryo-electron microscopy study. J. Cell Biol. 1991, 114:977-991.
-
(1991)
J. Cell Biol.
, vol.114
, pp. 977-991
-
-
Mandelkow, E.M.1
-
14
-
-
15444362410
-
Force production by depolymerizing microtubules: a theoretical study
-
Molodtsov M.I., et al. Force production by depolymerizing microtubules: a theoretical study. Proc. Natl. Acad. Sci. U. S. A. 2005, 102:4353-4358.
-
(2005)
Proc. Natl. Acad. Sci. U. S. A.
, vol.102
, pp. 4353-4358
-
-
Molodtsov, M.I.1
-
15
-
-
37649014357
-
In search of an optimal ring to couple microtubule depolymerization to processive chromosome motions
-
Efremov A., et al. In search of an optimal ring to couple microtubule depolymerization to processive chromosome motions. Proc. Natl. Acad. Sci. U. S. A. 2007, 104:19017-19022.
-
(2007)
Proc. Natl. Acad. Sci. U. S. A.
, vol.104
, pp. 19017-19022
-
-
Efremov, A.1
-
17
-
-
0035344213
-
The myosin swinging cross-bridge model
-
Spudich J.A. The myosin swinging cross-bridge model. Nat. Rev. Mol. Cell Biol. 2001, 2:387-392.
-
(2001)
Nat. Rev. Mol. Cell Biol.
, vol.2
, pp. 387-392
-
-
Spudich, J.A.1
-
18
-
-
0141504153
-
Polymer motors: pushing out the front and pulling up the back
-
Mogilner A., Oster G. Polymer motors: pushing out the front and pulling up the back. Curr. Biol. 2003, 13:R721-733.
-
(2003)
Curr. Biol.
, vol.13
-
-
Mogilner, A.1
Oster, G.2
-
19
-
-
0037459075
-
Cellular motility driven by assembly and disassembly of actin filaments
-
Pollard T.D., Borisy G.G. Cellular motility driven by assembly and disassembly of actin filaments. Cell 2003, 112:453-465.
-
(2003)
Cell
, vol.112
, pp. 453-465
-
-
Pollard, T.D.1
Borisy, G.G.2
-
20
-
-
0035897404
-
A mechanism for nuclear positioning in fission yeast based on microtubule pushing
-
Tran P.T., et al. A mechanism for nuclear positioning in fission yeast based on microtubule pushing. J. Cell Biol. 2001, 153:397-411.
-
(2001)
J. Cell Biol.
, vol.153
, pp. 397-411
-
-
Tran, P.T.1
-
21
-
-
12344264785
-
Force generation by dynamic microtubules
-
Dogterom M., et al. Force generation by dynamic microtubules. Curr. Opin. Cell Biol. 2005, 17:67-74.
-
(2005)
Curr. Opin. Cell Biol.
, vol.17
, pp. 67-74
-
-
Dogterom, M.1
-
22
-
-
63749125394
-
Kinesin's walk: springy or gated head coordination?
-
Wilson R.J. Kinesin's walk: springy or gated head coordination?. Biosystems 2009, 96:121-126.
-
(2009)
Biosystems
, vol.96
, pp. 121-126
-
-
Wilson, R.J.1
-
23
-
-
34249948276
-
Myosin V walks by lever action and Brownian motion
-
Shiroguchi K., Kinosita K. Myosin V walks by lever action and Brownian motion. Science 2007, 316:1208-1212.
-
(2007)
Science
, vol.316
, pp. 1208-1212
-
-
Shiroguchi, K.1
Kinosita, K.2
-
24
-
-
12344289259
-
Kinetochore-spindle microtubule interactions during mitosis
-
Kline-Smith S.L., et al. Kinetochore-spindle microtubule interactions during mitosis. Curr. Opin. Cell Biol. 2005, 17:35-46.
-
(2005)
Curr. Opin. Cell Biol.
, vol.17
, pp. 35-46
-
-
Kline-Smith, S.L.1
-
25
-
-
0027932906
-
Elements of error correction in mitosis: microtubule capture, release, and tension
-
Nicklas R.B., Ward S.C. Elements of error correction in mitosis: microtubule capture, release, and tension. J. Cell Biol. 1994, 126:1241-1253.
-
(1994)
J. Cell Biol.
, vol.126
, pp. 1241-1253
-
-
Nicklas, R.B.1
Ward, S.C.2
-
26
-
-
0033534575
-
Kin I kinesins are microtubule-destabilizing enzymes
-
Desai A., et al. Kin I kinesins are microtubule-destabilizing enzymes. Cell 1999, 96:69-78.
-
(1999)
Cell
, vol.96
, pp. 69-78
-
-
Desai, A.1
-
27
-
-
33746221673
-
Assembly dynamics of microtubules at molecular resolution
-
Kerssemakers J.W., et al. Assembly dynamics of microtubules at molecular resolution. Nature 2006, 442:709-712.
-
(2006)
Nature
, vol.442
, pp. 709-712
-
-
Kerssemakers, J.W.1
-
28
-
-
0030978807
-
How tubulin subunits are lost from the shortening ends of microtubules
-
Tran P.T., et al. How tubulin subunits are lost from the shortening ends of microtubules. J. Struct Biol. 1997, 118:107-118.
-
(1997)
J. Struct Biol.
, vol.118
, pp. 107-118
-
-
Tran, P.T.1
-
29
-
-
18044371707
-
Microtubules: a ring for the depolymerization motor
-
Salmon E.D. Microtubules: a ring for the depolymerization motor. Curr. Biol. 2005, 15:R299-302.
-
(2005)
Curr. Biol.
, vol.15
-
-
Salmon, E.D.1
-
30
-
-
33644850985
-
The Dam1 kinetochore ring complex moves processively on depolymerizing microtubule ends
-
Westermann S., et al. The Dam1 kinetochore ring complex moves processively on depolymerizing microtubule ends. Nature 2006, 440:565-569.
-
(2006)
Nature
, vol.440
, pp. 565-569
-
-
Westermann, S.1
-
31
-
-
33745603981
-
The Dam1 kinetochore complex harnesses microtubule dynamics to produce force and movement
-
Asbury C.L., et al. The Dam1 kinetochore complex harnesses microtubule dynamics to produce force and movement. Proc. Natl. Acad. Sci. U. S. A. 2006, 103:9873-9878.
-
(2006)
Proc. Natl. Acad. Sci. U. S. A.
, vol.103
, pp. 9873-9878
-
-
Asbury, C.L.1
-
32
-
-
43149104627
-
Phosphoregulation and depolymerization-driven movement of the Dam1 complex do not require ring formation
-
Gestaut D.R., et al. Phosphoregulation and depolymerization-driven movement of the Dam1 complex do not require ring formation. Nat. Cell Biol. 2008, 10:407-414.
-
(2008)
Nat. Cell Biol.
, vol.10
, pp. 407-414
-
-
Gestaut, D.R.1
-
33
-
-
44349095959
-
Different assemblies of the DAM1 complex follow shortening microtubules by distinct mechanisms
-
Grishchuk E.L., et al. Different assemblies of the DAM1 complex follow shortening microtubules by distinct mechanisms. Proc. Natl. Acad. Sci. U. S. A. 2008, 105:6918-6923.
-
(2008)
Proc. Natl. Acad. Sci. U. S. A.
, vol.105
, pp. 6918-6923
-
-
Grishchuk, E.L.1
-
34
-
-
77955829616
-
A non-ring-like form of the Dam1 complex modulates microtubule dynamics in fission yeast
-
Gao Q., et al. A non-ring-like form of the Dam1 complex modulates microtubule dynamics in fission yeast. Proc. Natl. Acad. Sci. U. S. A. 2010, 107:13330-13335.
-
(2010)
Proc. Natl. Acad. Sci. U. S. A.
, vol.107
, pp. 13330-13335
-
-
Gao, Q.1
-
35
-
-
34347373760
-
Protein arms in the kinetochore-microtubule interface of the yeast DASH complex
-
Miranda J.J., et al. Protein arms in the kinetochore-microtubule interface of the yeast DASH complex. Mol. Biol. Cell 2007, 18:2503-2510.
-
(2007)
Mol. Biol. Cell
, vol.18
, pp. 2503-2510
-
-
Miranda, J.J.1
-
36
-
-
53549118867
-
Fibrils connect microtubule tips with kinetochores: a mechanism to couple tubulin dynamics to chromosome motion
-
McIntosh J.R., et al. Fibrils connect microtubule tips with kinetochores: a mechanism to couple tubulin dynamics to chromosome motion. Cell 2008, 135:322-333.
-
(2008)
Cell
, vol.135
, pp. 322-333
-
-
McIntosh, J.R.1
-
37
-
-
27844495240
-
Force production by disassembling microtubules
-
Grishchuk E.L., et al. Force production by disassembling microtubules. Nature 2005, 438:384-388.
-
(2005)
Nature
, vol.438
, pp. 384-388
-
-
Grishchuk, E.L.1
-
38
-
-
34347397756
-
Tension applied through the Dam1 complex promotes microtubule elongation providing a direct mechanism for length control in mitosis
-
Franck A.D., et al. Tension applied through the Dam1 complex promotes microtubule elongation providing a direct mechanism for length control in mitosis. Nat. Cell Biol. 2007, 9:832-837.
-
(2007)
Nat. Cell Biol.
, vol.9
, pp. 832-837
-
-
Franck, A.D.1
-
39
-
-
77952377597
-
Cooperation of the Dam1 and Ndc80 kinetochore complexes enhances microtubule coupling and is regulated by aurora B
-
Tien J.F., et al. Cooperation of the Dam1 and Ndc80 kinetochore complexes enhances microtubule coupling and is regulated by aurora B. J. Cell Biol. 2010, 189:713-723.
-
(2010)
J. Cell Biol.
, vol.189
, pp. 713-723
-
-
Tien, J.F.1
-
40
-
-
78650532973
-
-
Tension directly stabilizes reconstituted kinetochore-microtubule attachments. In preparation
-
Akiyoshi, B. et al. (2010) Tension directly stabilizes reconstituted kinetochore-microtubule attachments. In preparation.
-
(2010)
-
-
Akiyoshi, B.1
-
41
-
-
33745004162
-
Kinetochores use a novel mechanism for coordinating the dynamics of individual microtubules
-
VandenBeldt K.J., et al. Kinetochores use a novel mechanism for coordinating the dynamics of individual microtubules. Curr. Biol. 2006, 16:1217-1223.
-
(2006)
Curr. Biol.
, vol.16
, pp. 1217-1223
-
-
VandenBeldt, K.J.1
-
42
-
-
77954056702
-
Contrasting models for kinetochore microtubule attachment in mammalian cells
-
McEwen B.F., Dong Y. Contrasting models for kinetochore microtubule attachment in mammalian cells. Cell Mol. Life Sci. 2010, 67:2163-2172.
-
(2010)
Cell Mol. Life Sci.
, vol.67
, pp. 2163-2172
-
-
McEwen, B.F.1
Dong, Y.2
-
43
-
-
44149083326
-
Molecular architecture of the kinetochore-microtubule attachment site is conserved between point and regional centromeres
-
Joglekar A.P., et al. Molecular architecture of the kinetochore-microtubule attachment site is conserved between point and regional centromeres. J. Cell Biol. 2008, 181:587-594.
-
(2008)
J. Cell Biol.
, vol.181
, pp. 587-594
-
-
Joglekar, A.P.1
-
44
-
-
33744804567
-
Molecular architecture of a kinetochore-microtubule attachment site
-
Joglekar A.P., et al. Molecular architecture of a kinetochore-microtubule attachment site. Nat. Cell Biol. 2006, 8:581-585.
-
(2006)
Nat. Cell Biol.
, vol.8
, pp. 581-585
-
-
Joglekar, A.P.1
-
45
-
-
26244443799
-
Measuring the stoichiometry and physical interactions between components elucidates the architecture of the vertebrate kinetochore
-
Emanuele M.J., et al. Measuring the stoichiometry and physical interactions between components elucidates the architecture of the vertebrate kinetochore. Mol. Biol. Cell 2005, 16:4882-4892.
-
(2005)
Mol. Biol. Cell
, vol.16
, pp. 4882-4892
-
-
Emanuele, M.J.1
-
46
-
-
61349161067
-
The Ndc80 kinetochore complex forms load-bearing attachments to dynamic microtubule tips via biased diffusion
-
Powers A.F., et al. The Ndc80 kinetochore complex forms load-bearing attachments to dynamic microtubule tips via biased diffusion. Cell 2009, 136:865-875.
-
(2009)
Cell
, vol.136
, pp. 865-875
-
-
Powers, A.F.1
-
47
-
-
77952377598
-
The Dam1 complex confers microtubule plus end-tracking activity to the Ndc80 kinetochore complex
-
Lampert F., et al. The Dam1 complex confers microtubule plus end-tracking activity to the Ndc80 kinetochore complex. J. Cell Biol. 2010, 189:641-649.
-
(2010)
J. Cell Biol.
, vol.189
, pp. 641-649
-
-
Lampert, F.1
-
48
-
-
43049146221
-
Implications for kinetochore-microtubule attachment from the structure of an engineered Ndc80 complex
-
Ciferri C., et al. Implications for kinetochore-microtubule attachment from the structure of an engineered Ndc80 complex. Cell 2008, 133:427-439.
-
(2008)
Cell
, vol.133
, pp. 427-439
-
-
Ciferri, C.1
-
49
-
-
33846100785
-
The Ndc80/HEC1 complex is a contact point for kinetochore-microtubule attachment
-
Wei R.R., et al. The Ndc80/HEC1 complex is a contact point for kinetochore-microtubule attachment. Nat. Struct. Mol. Biol. 2007, 14:54-59.
-
(2007)
Nat. Struct. Mol. Biol.
, vol.14
, pp. 54-59
-
-
Wei, R.R.1
-
50
-
-
53149128681
-
Architecture and flexibility of the yeast Ndc80 kinetochore complex
-
Wang H.W., et al. Architecture and flexibility of the yeast Ndc80 kinetochore complex. J. Mol. Biol. 2008, 383:894-903.
-
(2008)
J. Mol. Biol.
, vol.383
, pp. 894-903
-
-
Wang, H.W.1
-
51
-
-
56349089656
-
Kinetochore-microtubule attachment relies on the disordered N-terminal tail domain of Hec1
-
Guimaraes G.J., et al. Kinetochore-microtubule attachment relies on the disordered N-terminal tail domain of Hec1. Curr. Biol. 2008, 18:1778-1784.
-
(2008)
Curr. Biol.
, vol.18
, pp. 1778-1784
-
-
Guimaraes, G.J.1
-
52
-
-
56349098273
-
Kinetochore attachments require an interaction between unstructured tails on microtubules and Ndc80(Hec1)
-
Miller S.A., et al. Kinetochore attachments require an interaction between unstructured tails on microtubules and Ndc80(Hec1). Curr. Biol. 2008, 18:1785-1791.
-
(2008)
Curr. Biol.
, vol.18
, pp. 1785-1791
-
-
Miller, S.A.1
-
53
-
-
34247891773
-
The outer plate in vertebrate kinetochores is a flexible network with multiple microtubule interactions
-
Dong Y., et al. The outer plate in vertebrate kinetochores is a flexible network with multiple microtubule interactions. Nat. Cell Biol. 2007, 9:516-522.
-
(2007)
Nat. Cell Biol.
, vol.9
, pp. 516-522
-
-
Dong, Y.1
-
54
-
-
12844283239
-
Hec1 and nuf2 are core components of the kinetochore outer plate essential for organizing microtubule attachment sites
-
DeLuca J.G., et al. Hec1 and nuf2 are core components of the kinetochore outer plate essential for organizing microtubule attachment sites. Mol. Biol. Cell 2005, 16:519-531.
-
(2005)
Mol. Biol. Cell
, vol.16
, pp. 519-531
-
-
DeLuca, J.G.1
-
55
-
-
0023754978
-
The forces that move chromosomes in mitosis
-
Nicklas R.B. The forces that move chromosomes in mitosis. Annu. Rev. Biophys. Biophys. Chem. 1988, 17:431-449.
-
(1988)
Annu. Rev. Biophys. Biophys. Chem.
, vol.17
, pp. 431-449
-
-
Nicklas, R.B.1
-
56
-
-
67249108373
-
DNA relaxation dynamics as a probe for the intracellular environment
-
Fisher J.K., et al. DNA relaxation dynamics as a probe for the intracellular environment. Proc. Natl. Acad. Sci. U. S. A. 2009, 106:9250-9255.
-
(2009)
Proc. Natl. Acad. Sci. U. S. A.
, vol.106
, pp. 9250-9255
-
-
Fisher, J.K.1
-
57
-
-
0035911958
-
Budding yeast chromosome structure and dynamics during mitosis
-
Pearson C.G., et al. Budding yeast chromosome structure and dynamics during mitosis. J. Cell Biol. 2001, 152:1255-1266.
-
(2001)
J. Cell Biol.
, vol.152
, pp. 1255-1266
-
-
Pearson, C.G.1
-
58
-
-
0037133348
-
Mechanical disruption of individual nucleosomes reveals a reversible multistage release of DNA
-
Brower-Toland B.D., et al. Mechanical disruption of individual nucleosomes reveals a reversible multistage release of DNA. Proc. Natl. Acad. Sci. U. S. A. 2002, 99:1960-1965.
-
(2002)
Proc. Natl. Acad. Sci. U. S. A.
, vol.99
, pp. 1960-1965
-
-
Brower-Toland, B.D.1
-
59
-
-
0037080986
-
Four new subunits of the Dam1-Duo1 complex reveal novel functions in sister kinetochore biorientation
-
Janke C., et al. Four new subunits of the Dam1-Duo1 complex reveal novel functions in sister kinetochore biorientation. EMBO J. 2002, 21:181-193.
-
(2002)
EMBO J.
, vol.21
, pp. 181-193
-
-
Janke, C.1
-
60
-
-
34447538485
-
Molecular mechanisms of microtubule-dependent kinetochore transport toward spindle poles
-
Tanaka K., et al. Molecular mechanisms of microtubule-dependent kinetochore transport toward spindle poles. J. Cell Biol. 2007, 178:269-281.
-
(2007)
J. Cell Biol.
, vol.178
, pp. 269-281
-
-
Tanaka, K.1
-
61
-
-
77951638248
-
Force transduction by the microtubule-bound Dam1 ring
-
Armond J.W., Turner M.S. Force transduction by the microtubule-bound Dam1 ring. Biophys. J. 2010, 98:1598-1607.
-
(2010)
Biophys. J.
, vol.98
, pp. 1598-1607
-
-
Armond, J.W.1
Turner, M.S.2
-
62
-
-
33845504864
-
A driving and coupling "Pac-Man" mechanism for chromosome poleward translocation in anaphase A
-
Liu J., Onuchic J.N. A driving and coupling "Pac-Man" mechanism for chromosome poleward translocation in anaphase A. Proc. Natl. Acad. Sci. U. S. A. 2006, 103:18432-18437.
-
(2006)
Proc. Natl. Acad. Sci. U. S. A.
, vol.103
, pp. 18432-18437
-
-
Liu, J.1
Onuchic, J.N.2
-
63
-
-
0037197966
-
Estimates of lateral and longitudinal bond energies within the microtubule lattice
-
VanBuren V., et al. Estimates of lateral and longitudinal bond energies within the microtubule lattice. Proc. Natl. Acad. Sci. U. S. A. 2002, 99:6035-6040.
-
(2002)
Proc. Natl. Acad. Sci. U. S. A.
, vol.99
, pp. 6035-6040
-
-
VanBuren, V.1
-
65
-
-
0028149355
-
The free energy for hydrolysis of a microtubule-bound nucleotide triphosphate is near zero: all of the free energy for hydrolysis is stored in the microtubule lattice
-
Caplow M., et al. The free energy for hydrolysis of a microtubule-bound nucleotide triphosphate is near zero: all of the free energy for hydrolysis is stored in the microtubule lattice. J. Cell Biol. 1994, 127:779-788.
-
(1994)
J. Cell Biol.
, vol.127
, pp. 779-788
-
-
Caplow, M.1
-
66
-
-
0029153356
-
Rigidity of microtubules is increased by stabilizing agents
-
Mickey B., Howard J. Rigidity of microtubules is increased by stabilizing agents. J. Cell Biol. 1995, 130:909-917.
-
(1995)
J. Cell Biol.
, vol.130
, pp. 909-917
-
-
Mickey, B.1
Howard, J.2
-
68
-
-
37549071893
-
Molecular architecture of the kinetochore-microtubule interface
-
Cheeseman I.M., Desai A. Molecular architecture of the kinetochore-microtubule interface. Nat. Rev. Mol. Cell Biol. 2008, 9:33-46.
-
(2008)
Nat. Rev. Mol. Cell Biol.
, vol.9
, pp. 33-46
-
-
Cheeseman, I.M.1
Desai, A.2
-
69
-
-
52249087768
-
Orientation and structure of the Ndc80 complex on the microtubule lattice
-
Wilson-Kubalek E.M., et al. Orientation and structure of the Ndc80 complex on the microtubule lattice. J. Cell Biol. 2008, 182:1055-1061.
-
(2008)
J. Cell Biol.
, vol.182
, pp. 1055-1061
-
-
Wilson-Kubalek, E.M.1
-
70
-
-
33746565986
-
Mps1 phosphorylation of Dam1 couples kinetochores to microtubule plus ends at metaphase
-
Shimogawa M.M., et al. Mps1 phosphorylation of Dam1 couples kinetochores to microtubule plus ends at metaphase. Curr. Biol. 2006, 16:1489-1501.
-
(2006)
Curr. Biol.
, vol.16
, pp. 1489-1501
-
-
Shimogawa, M.M.1
-
71
-
-
0037131572
-
Phospho-regulation of kinetochore-microtubule attachments by the Aurora kinase Ipl1p
-
Cheeseman I.M., et al. Phospho-regulation of kinetochore-microtubule attachments by the Aurora kinase Ipl1p. Cell 2002, 111:163-172.
-
(2002)
Cell
, vol.111
, pp. 163-172
-
-
Cheeseman, I.M.1
-
72
-
-
0041467803
-
Kinetochore protein interactions and their regulation by the Aurora kinase Ipl1p
-
Shang C., et al. Kinetochore protein interactions and their regulation by the Aurora kinase Ipl1p. Mol. Biol. Cell 2003, 14:3342-3355.
-
(2003)
Mol. Biol. Cell
, vol.14
, pp. 3342-3355
-
-
Shang, C.1
-
73
-
-
69949117643
-
Ska3 is required for spindle checkpoint silencing and the maintenance of chromosome cohesion in mitosis
-
Daum J.R., et al. Ska3 is required for spindle checkpoint silencing and the maintenance of chromosome cohesion in mitosis. Curr. Biol. 2009, 19:1467-1472.
-
(2009)
Curr. Biol.
, vol.19
, pp. 1467-1472
-
-
Daum, J.R.1
-
74
-
-
66249086063
-
Stable kinetochore-microtubule interactions depend on the Ska complex and its new component Ska3/C13Orf3
-
Gaitanos T.N., et al. Stable kinetochore-microtubule interactions depend on the Ska complex and its new component Ska3/C13Orf3. EMBO J. 2009, 28:1442-1452.
-
(2009)
EMBO J.
, vol.28
, pp. 1442-1452
-
-
Gaitanos, T.N.1
-
75
-
-
33751569886
-
Timely anaphase onset requires a novel spindle and kinetochore complex comprising Ska1 and Ska2
-
Hanisch A., et al. Timely anaphase onset requires a novel spindle and kinetochore complex comprising Ska1 and Ska2. EMBO J. 2006, 25:5504-5515.
-
(2006)
EMBO J.
, vol.25
, pp. 5504-5515
-
-
Hanisch, A.1
-
76
-
-
69649106682
-
RAMA1 is a novel kinetochore protein involved in kinetochore-microtubule attachment
-
Raaijmakers J.A., et al. RAMA1 is a novel kinetochore protein involved in kinetochore-microtubule attachment. J. Cell Sci. 2009, 122:2436-2445.
-
(2009)
J. Cell Sci.
, vol.122
, pp. 2436-2445
-
-
Raaijmakers, J.A.1
-
77
-
-
66249131877
-
Comparative profiling identifies C13orf3 as a component of the Ska complex required for mammalian cell division
-
Theis M., et al. Comparative profiling identifies C13orf3 as a component of the Ska complex required for mammalian cell division. EMBO J. 2009, 28:1453-1465.
-
(2009)
EMBO J.
, vol.28
, pp. 1453-1465
-
-
Theis, M.1
-
78
-
-
61749084467
-
The human kinetochore Ska1 complex facilitates microtubule depolymerization-coupled motility
-
Welburn J.P., et al. The human kinetochore Ska1 complex facilitates microtubule depolymerization-coupled motility. Dev. Cell 2009, 16:374-385.
-
(2009)
Dev. Cell
, vol.16
, pp. 374-385
-
-
Welburn, J.P.1
-
79
-
-
0344875491
-
Interactions between centromere complexes in Saccharomyces cerevisiae
-
Nekrasov V.S., et al. Interactions between centromere complexes in Saccharomyces cerevisiae. Mol. Biol. Cell 2003, 14:4931-4946.
-
(2003)
Mol. Biol. Cell
, vol.14
, pp. 4931-4946
-
-
Nekrasov, V.S.1
-
80
-
-
70449626289
-
Roles for the conserved spc105p/kre28p complex in kinetochore-microtubule binding and the spindle assembly checkpoint
-
Pagliuca C., et al. Roles for the conserved spc105p/kre28p complex in kinetochore-microtubule binding and the spindle assembly checkpoint. PLoS One 2009, 4:e7640.
-
(2009)
PLoS One
, vol.4
-
-
Pagliuca, C.1
-
81
-
-
33751232957
-
The conserved KMN network constitutes the core microtubule-binding site of the kinetochore
-
Cheeseman I.M., et al. The conserved KMN network constitutes the core microtubule-binding site of the kinetochore. Cell 2006, 127:983-997.
-
(2006)
Cell
, vol.127
, pp. 983-997
-
-
Cheeseman, I.M.1
-
82
-
-
4444241998
-
A conserved protein network controls assembly of the outer kinetochore and its ability to sustain tension
-
Cheeseman I.M., et al. A conserved protein network controls assembly of the outer kinetochore and its ability to sustain tension. Genes Dev. 2004, 18:2255-2268.
-
(2004)
Genes Dev.
, vol.18
, pp. 2255-2268
-
-
Cheeseman, I.M.1
-
83
-
-
0141818005
-
KNL-1 directs assembly of the microtubule-binding interface of the kinetochore in C. elegans
-
Desai A., et al. KNL-1 directs assembly of the microtubule-binding interface of the kinetochore in C. elegans. Genes Dev. 2003, 17:2421-2435.
-
(2003)
Genes Dev.
, vol.17
, pp. 2421-2435
-
-
Desai, A.1
|