메뉴 건너뛰기




Volumn 14, Issue 4, 2010, Pages 789-802

Prediction of carcinogenicity for diverse chemicals based on substructure grouping and SVM modeling

Author keywords

Carcinogenicity prediction; Correlation coefficient; Cross validation (CV); Molecular descriptors; Quantitative structure activity relationship (QSAR); Substructure grouping; Support vector classification (SVC); Support vector machine (SVM)

Indexed keywords

CARCINOGEN;

EID: 78650180018     PISSN: 13811991     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11030-010-9232-y     Document Type: Article
Times cited : (22)

References (65)
  • 1
    • 0019829568 scopus 로고
    • The causes of cancer: Quantitative estimates of avoidable risks of cancer in the United States today
    • R Doll R Peto 1981 The causes of cancer: quantitative estimates of avoidable risks of cancer in the United States today J Natl Cancer Inst 66 1192 1309
    • (1981) J Natl Cancer Inst , vol.66 , pp. 1192-1309
    • Doll, R.1    Peto, R.2
  • 3
    • 0033655505 scopus 로고    scopus 로고
    • A study of structure-carcinogenicity relationship for 86 compounds from NTP database using topological indexes as descriptors
    • 10.1080/10629360008039117 1:CAS:528:DC%2BD3cXjvFOns7c%3D 10.1080/10629360008039117 10877472
    • M Vracko 2000 A study of structure-carcinogenicity relationship for 86 compounds from NTP database using topological indexes as descriptors SAR QSAR Environ Res 11 103 115 10.1080/10629360008039117 1:CAS:528:DC%2BD3cXjvFOns7c%3D 10.1080/10629360008039117 10877472
    • (2000) SAR QSAR Environ Res , vol.11 , pp. 103-115
    • Vracko, M.1
  • 5
    • 0142088806 scopus 로고    scopus 로고
    • Quantitative structure-activity relationships for predicting mutagenicity and carcinogenicity
    • DOI 10.1897/01-461
    • G Patlewicz R Rodford JD Walker 2003 Quantitative structure-activity relationships for predicting mutagenicity and carcinogenicity Environ Toxicol Chem 22 1885 1893 10.1897/01-461 1:CAS:528:DC%2BD3sXotF2gs7k%3D 10.1897/01-461 12924587 (Pubitemid 37337312)
    • (2003) Environmental Toxicology and Chemistry , vol.22 , Issue.8 , pp. 1885-1893
    • Patlewicz, G.1    Rodford, R.2    Walker, J.D.3
  • 6
    • 33845920205 scopus 로고    scopus 로고
    • Prediction of human health endpoints: Mutagenicity and carcinogenicity
    • M.T.D. Cronin D.J. Livingstone (eds). CRC Press Boca Raton
    • Benigni R (2004) Prediction of human health endpoints: mutagenicity and carcinogenicity. In: Cronin MTD, Livingstone DJ (eds) Predicting chemical toxicity and fate. CRC Press, Boca Raton, pp 173-192
    • (2004) Predicting Chemical Toxicity and Fate , pp. 173-192
    • Benigni, R.1
  • 7
    • 4043086954 scopus 로고    scopus 로고
    • Prediction of chemical carcinogenicity from molecular structure
    • 10.1021/ci049917y 1:CAS:528:DC%2BD2cXktVKlsLo%3D 15272859
    • H Sun 2004 Prediction of chemical carcinogenicity from molecular structure J Chem Inf Comput Sci 44 1506 1514 10.1021/ci049917y 1:CAS:528:DC%2BD2cXktVKlsLo%3D 15272859
    • (2004) J Chem Inf Comput Sci , vol.44 , pp. 1506-1514
    • Sun, H.1
  • 8
    • 28944440014 scopus 로고    scopus 로고
    • Prediction of the rodent carcinogenicity of 60 pesticides by the DEREKfW expert system
    • DOI 10.1021/ci050150z
    • P Crettaz R Benigni 2005 Prediction of the rodent carcinogenicity of 60 pesticides by the DEREKfw expert system J Chem Inf Comput Sci 45 1864 1873 10.1021/ci050150z 1:CAS:528:DC%2BD2MXhtVCjsr3M (Pubitemid 41784761)
    • (2005) Journal of Chemical Information and Modeling , vol.45 , Issue.6 , pp. 1864-1873
    • Crettaz, P.1    Benigni, R.2
  • 9
    • 32044469800 scopus 로고    scopus 로고
    • The prediction of carcinogenicity from molecular structure
    • 1:CAS:528:DC%2BD2MXmsVehsbo%3D 10.2174/1573409054367655
    • AM Helguera MCA Perez RD Combes MP Gonzalez 2005 The prediction of carcinogenicity from molecular structure Curr Comp Aid Drug Des 1 237 255 1:CAS:528:DC%2BD2MXmsVehsbo%3D 10.2174/1573409054367655
    • (2005) Curr Comp Aid Drug des , vol.1 , pp. 237-255
    • Helguera, A.M.1    Perez, M.C.A.2    Combes, R.D.3    Gonzalez, M.P.4
  • 10
    • 21744437416 scopus 로고    scopus 로고
    • QSAR modeling of carcinogenic risk using discriminant analysis and topological molecular descriptors
    • DOI 10.2174/1570163054064684
    • JF Contrera P MacLaughlin LH Hall LB Kier 2005 QSAR modeling of carcinogenic risk using discriminant analysis and topological molecular descriptors Curr Drug Discov Tech 2 55 67 10.2174/1570163054064684 1:CAS:528:DC%2BD2MXmtVOrsb0%3D 10.2174/1570163054064684 (Pubitemid 40943977)
    • (2005) Current Drug Discovery Technologies , vol.2 , Issue.2 , pp. 55-67
    • Contrera, J.F.1    MacLaughlin, P.2    Hall, L.H.3    Kier, L.B.4
  • 11
    • 45749145250 scopus 로고    scopus 로고
    • Predictivity of QSAR
    • 10.1021/ci8000088 1:CAS:528:DC%2BD1cXkvFartLk%3D 10.1021/ci8000088 18426198
    • R Benigni C Bossa 2008 Predictivity of QSAR J Chem Inf Model 48 971 980 10.1021/ci8000088 1:CAS:528:DC%2BD1cXkvFartLk%3D 10.1021/ci8000088 18426198
    • (2008) J Chem Inf Model , vol.48 , pp. 971-980
    • Benigni, R.1    Bossa, C.2
  • 12
    • 0034301460 scopus 로고    scopus 로고
    • Quantitative structure-activity relationships of mutagenic and carcinogenic aromatic amines
    • 10.1021/cr9901079 1:CAS:528:DC%2BD3cXlslSku7g%3D 10.1021/cr9901079 11749325
    • R Benigni A Giuliani R Franke A Gruska 2000 Quantitative structure-activity relationships of mutagenic and carcinogenic aromatic amines Chem Rev 100 3697 3714 10.1021/cr9901079 1:CAS:528:DC%2BD3cXlslSku7g%3D 10.1021/cr9901079 11749325
    • (2000) Chem Rev , vol.100 , pp. 3697-3714
    • Benigni, R.1    Giuliani, A.2    Franke, R.3    Gruska, A.4
  • 13
    • 0034807089 scopus 로고    scopus 로고
    • Prediction of rodent carcinogenicity of aromatic amines: A quantitative structure-activity relationships model
    • 1:CAS:528:DC%2BD3MXmvVylsr0%3D 10.1093/carcin/22.9.1561
    • R Franke A Gruska A Giuliani R Benigni 2001 Prediction of rodent carcinogenicity of aromatic amines: a quantitative structure-activity relationships model Carcinogenisis 22 1561 1571 1:CAS:528:DC%2BD3MXmvVylsr0%3D 10.1093/carcin/22.9.1561
    • (2001) Carcinogenisis , vol.22 , pp. 1561-1571
    • Franke, R.1    Gruska, A.2    Giuliani, A.3    Benigni, R.4
  • 15
    • 0033219692 scopus 로고    scopus 로고
    • Structure-activity relationships of carcinogenic activity of polycyclic aromatic hydrocarbons using calculated molecular descriptors with principal component analysis and neural network methods
    • 10.1021/ci990326v 1:CAS:528:DyaK1MXms1eju74%3D 10614026
    • R Vendrame RS Braga Y Takahata DS Galvao 1999 Structure-activity relationships of carcinogenic activity of polycyclic aromatic hydrocarbons using calculated molecular descriptors with principal component analysis and neural network methods J Chem Inf Comput Sci 39 1094 1104 10.1021/ci990326v 1:CAS:528:DyaK1MXms1eju74%3D 10614026
    • (1999) J Chem Inf Comput Sci , vol.39 , pp. 1094-1104
    • Vendrame, R.1    Braga, R.S.2    Takahata, Y.3    Galvao, D.S.4
  • 16
    • 0033580531 scopus 로고    scopus 로고
    • Identifying carcinogenic activity of methylated polycyclic aromatic hydrocarbons (PAHs)
    • 10.1016/S0166-1280(98)00557-0 1:CAS:528:DyaK1MXjtVyntb4%3D
    • RS Braga PMVB Barone DS Galvao 1999 Identifying carcinogenic activity of methylated polycyclic aromatic hydrocarbons (PAHs) J Mol Struct 464 257 266 10.1016/S0166-1280(98)00557-0 1:CAS:528:DyaK1MXjtVyntb4%3D
    • (1999) J Mol Struct , vol.464 , pp. 257-266
    • Braga, R.S.1    Pmvb, B.2    Galvao, D.S.3
  • 17
    • 0037363602 scopus 로고    scopus 로고
    • QSAR model of PAHs carcinogenesis based on thermodynamic stabilities of bioactive sites
    • 10.1021/ci0256135 1:CAS:528:DC%2BD3sXptVSitw%3D%3D 12653529
    • Z Zhou Q Dai TA Gu 2003 QSAR model of PAHs carcinogenesis based on thermodynamic stabilities of bioactive sites J Chem Inf Comput Sci 43 615 621 10.1021/ci0256135 1:CAS:528:DC%2BD3sXptVSitw%3D%3D 12653529
    • (2003) J Chem Inf Comput Sci , vol.43 , pp. 615-621
    • Zhou, Z.1    Dai, Q.2    Gu, T.A.3
  • 18
    • 77953213503 scopus 로고    scopus 로고
    • SARs and QSARs of mutagens and carcinogens: Understanding action mechanisms and improving risk assessment
    • R. Benigni (eds). CRC Press Boca Raton. 10.1201/9780203010822
    • Benigni R (2003) SARs and QSARs of mutagens and carcinogens: understanding action mechanisms and improving risk assessment. In: Benigni R (eds) Quantitative structure-activity relationship (QSAR) models of mutagens and carcinogens. CRC Press, Boca Raton, pp 259-282
    • (2003) Quantitative Structure-activity Relationship (QSAR) Models of Mutagens and Carcinogens , pp. 259-282
    • Benigni, R.1
  • 19
    • 20044383057 scopus 로고    scopus 로고
    • Structure-activity relationship studies of chemical mutagens and carcinogens: Mechanistic investigations and prediction approaches
    • DOI 10.1021/cr030049y
    • R Benigni 2005 Structure-activity relationship studies of chemical mutagens and carcinogens: Mechanistic investigations and prediction approaches Chem Rev 105 1767 1800 10.1021/cr030049y 1:CAS:528:DC%2BD2MXit1Oisr8%3D 10.1021/cr030049y 15884789 (Pubitemid 40773667)
    • (2005) Chemical Reviews , vol.105 , Issue.5 , pp. 1767-1800
    • Benigni, R.1
  • 21
    • 0038156116 scopus 로고    scopus 로고
    • A survey of the predictive toxicology challenge 2000-2001
    • DOI 10.1093/bioinformatics/btg084
    • C Helma S Kramer 2003 A survey of the predictive toxicology challenge 2000-2001 Bioinformatics 19 1179 1182 1:CAS:528:DC%2BD3sXmtF2kurw%3D 10.1093/bioinformatics/btg084 12835259 (Pubitemid 36850209)
    • (2003) Bioinformatics , vol.19 , Issue.10 , pp. 1179-1182
    • Helma, C.1    Kramer, S.2
  • 22
    • 66849142654 scopus 로고    scopus 로고
    • Drug design with machine learning
    • R.A. Meyers (eds). Springer-Verlag New York
    • Ivanciuc O (2009) Drug design with machine learning. In: Meyers RA (eds) Encyclopedia of complexity and system science. Springer-Verlag, New York
    • (2009) Encyclopedia of Complexity and System Science
    • Ivanciuc, O.1
  • 23
  • 24
    • 42149179358 scopus 로고    scopus 로고
    • Hidden active information in a random compound library: Extraction using a pseudo-structure-activity relationship model
    • DOI 10.1021/ci7003384
    • H Fukunishi R Teramoto J Shimada 2008 Hidden active information in a random compound library: Extraction using a pseudo-structure-activity relationship model J Chem Inf Model 48 575 582 10.1021/ci7003384 1:CAS:528:DC%2BD1cXitVals74%3D 10.1021/ci7003384 18278890 (Pubitemid 351535425)
    • (2008) Journal of Chemical Information and Modeling , vol.48 , Issue.3 , pp. 575-582
    • Fukunishi, H.1    Teramoto, R.2    Shimada, J.3
  • 25
    • 54249123263 scopus 로고    scopus 로고
    • Accurate and interpretable computational modeling of chemical mutagenicity
    • 10.1021/ci800094a 1:CAS:528:DC%2BD1cXhtVOmt77P 10.1021/ci800094a 18771257
    • JJ Langham AN Jain 2008 Accurate and interpretable computational modeling of chemical mutagenicity J Chem Inf Model 48 1833 1839 10.1021/ci800094a 1:CAS:528:DC%2BD1cXhtVOmt77P 10.1021/ci800094a 18771257
    • (2008) J Chem Inf Model , vol.48 , pp. 1833-1839
    • Langham, J.J.1    Jain, A.N.2
  • 26
    • 71249126927 scopus 로고    scopus 로고
    • Feature selection for the imbalanced QSAR problems by using EasyEnsemble
    • 10.1504/IJCBDD.2008.022206 1:CAS:528:DC%2BD1MXkt12nsbw%3D 10.1504/IJCBDD.2008.022206
    • T-Y Liu G-Z Li JY Yang MQ Yang 2008 Feature selection for the imbalanced QSAR problems by using EasyEnsemble Int J Comput Biol Drug Design 1 334 346 10.1504/IJCBDD.2008.022206 1:CAS:528:DC%2BD1MXkt12nsbw%3D 10.1504/IJCBDD.2008. 022206
    • (2008) Int J Comput Biol Drug Design , vol.1 , pp. 334-346
    • Liu, T.-Y.1    Li, G.-Z.2    Yang, J.Y.3    Yang, M.Q.4
  • 27
    • 84974803514 scopus 로고    scopus 로고
    • Mechanisms of action of chemical carcinogens and their role in structure-activity relationship (SAR) analysis and risk assessment
    • R. Benigni (eds). CRC Press Boca Raton
    • Woo Y-T, Lai DY (2003) Mechanisms of action of chemical carcinogens and their role in structure-activity relationship (SAR) analysis and risk assessment. In: Benigni R (eds) Quantitative structure-activity relationship (QSAR) models of mutagens and carcinogens. CRC Press, Boca Raton, pp 41-80
    • (2003) Quantitative Structure-activity Relationship (QSAR) Models of Mutagens and Carcinogens , pp. 41-80
    • Woo, Y.-T.1    Lai, D.Y.2
  • 29
    • 78650174063 scopus 로고    scopus 로고
    • Quantitative structure-activity relationships
    • J. Zupan J. Gasteiger (eds). 2 Weinheim Wiley-VCH
    • Zupan J, Gasteiger J (1999) Quantitative structure-activity relationships. In: Zupan J, Gasteiger J (eds) Neural networks in chemistry and drug design, 2nd edn. Weinheim, Wiley-VCH, pp 219-242
    • (1999) Neural Networks in Chemistry and Drug Design , pp. 219-242
    • Zupan, J.1    Gasteiger, J.2
  • 30
    • 0034367139 scopus 로고    scopus 로고
    • Artificial neural networks and their use in chemistry
    • K.B. Lipkowitz D.B. Boyd (eds). Wiley-VCH New York. 10.1002/ 9780470125939.ch2
    • Peterson KL (2000) Artificial neural networks and their use in chemistry. In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry. Wiley-VCH, New York, pp 53-140
    • (2000) Reviews in Computational Chemistry , vol.16 , pp. 53-140
    • Peterson, K.L.1
  • 31
    • 66849094234 scopus 로고    scopus 로고
    • Drug design with artificial neural networks
    • R.A. Meyers (eds). Springer-Verlag New York
    • Ivanciuc O (2009) Drug design with artificial neural networks. In: Meyers RA (eds) Encyclopedia of complexity and system science. Springer-Verlag, New York
    • (2009) Encyclopedia of Complexity and System Science
    • Ivanciuc, O.1
  • 32
    • 0034218972 scopus 로고    scopus 로고
    • Use of statistical and neural net approaches in predicting toxicity of chemicals
    • 10.1021/ci9901136 1:CAS:528:DC%2BD3cXktFOhsro%3D 10955514
    • SC Basak GD Grunwald BD Gute K Balasubramanian D Optiz 2000 Use of statistical and neural net approaches in predicting toxicity of chemicals J Chem Inf Comput Sci 40 885 890 10.1021/ci9901136 1:CAS:528:DC%2BD3cXktFOhsro%3D 10955514
    • (2000) J Chem Inf Comput Sci , vol.40 , pp. 885-890
    • Basak, S.C.1    Grunwald, G.D.2    Gute, B.D.3    Balasubramanian, K.4    Optiz, D.5
  • 33
    • 0034221206 scopus 로고    scopus 로고
    • Symbolic, neural, and Bayesian machine learning models for predicting carcinogenicity of chemical compounds
    • 10.1021/ci990116i 1:CAS:528:DC%2BD3cXltVyns74%3D 10955517
    • D Bahler B Stone C Wellington D Bristol 2000 Symbolic, neural, and Bayesian machine learning models for predicting carcinogenicity of chemical compounds J Chem Inf Comput Sci 40 906 914 10.1021/ci990116i 1:CAS:528:DC%2BD3cXltVyns74%3D 10955517
    • (2000) J Chem Inf Comput Sci , vol.40 , pp. 906-914
    • Bahler, D.1    Stone, B.2    Wellington, C.3    Bristol, D.4
  • 34
    • 13844316617 scopus 로고    scopus 로고
    • Toward an optimal procedure for PC-ANN model building: Prediction of the carcinogenic activity of a large set of drugs
    • DOI 10.1021/ci049766z
    • B Hemmateenejad M Safarpour R Miri N Nesari 2005 Toward an optimal procedure for PC-ANN model building: prediction of the carcinogenic activity of a large set of drugs J Chem Inf Model 45 190 199 10.1021/ci049766z 1:CAS:528:DC%2BD2cXhtVGhs7fN 10.1021/ci049766z 15667145 (Pubitemid 40736972)
    • (2005) Journal of Chemical Information and Modeling , vol.45 , Issue.1 , pp. 190-199
    • Hemmateenejad, B.1    Safarpour, M.A.2    Miri, R.3    Nesari, N.4
  • 35
    • 0000381846 scopus 로고    scopus 로고
    • Strengths and weaknesses of the back-propagation neural network in QSAR and QSPR studies
    • J. Devillers (eds). Academic Press London. 10.1016/B978-012213815-7/ 50002-9
    • Devillers J (1996) Strengths and weaknesses of the back-propagation neural network in QSAR and QSPR studies. In: Devillers J (eds) Neural networks in QSAR and drug design. Academic Press, London, pp 1-46
    • (1996) Neural Networks in QSAR and Drug Design , pp. 1-46
    • Devillers, J.1
  • 36
    • 78650178810 scopus 로고    scopus 로고
    • Neural network prediction of carcinogenicity of diverse organic compounds
    • 10.2477/jccj.4.89 1:CAS:528:DC%2BD2MXht1GjtbzM 10.2477/jccj.4.89
    • K Tanabe N Ohmori S Ono T Suzuki T Matsumoto U Nagashima H Uesaka 2005 Neural network prediction of carcinogenicity of diverse organic compounds J Comput Chem Jpn 4 89 100 10.2477/jccj.4.89 1:CAS:528:DC%2BD2MXht1GjtbzM 10.2477/jccj.4.89
    • (2005) J Comput Chem Jpn , vol.4 , pp. 89-100
    • Tanabe, K.1    Ohmori, N.2    Ono, S.3    Suzuki, T.4    Matsumoto, T.5    Nagashima, U.6    Uesaka, H.7
  • 37
    • 27744504615 scopus 로고    scopus 로고
    • N. Chen W. Lu J. Yang G. Li (eds). World Scientific Singapore
    • Chen, N, Lu, W, Yang, J, Li, G (eds) (2004) Support vector machine in chemistry. World Scientific, Singapore
    • (2004) Support Vector Machine in Chemistry
  • 38
    • 34848824629 scopus 로고    scopus 로고
    • Applications of support vector machines in chemistry
    • 10.1002/9780470116449.ch6 1:CAS:528:DC%2BD2sXisFWquro%3D 10.1002/9780470116449.ch6
    • O Ivanciuc 2007 Applications of support vector machines in chemistry Rev Comput Chem 23 291 400 10.1002/9780470116449.ch6 1:CAS:528:DC%2BD2sXisFWquro%3D 10.1002/9780470116449.ch6
    • (2007) Rev Comput Chem , vol.23 , pp. 291-400
    • Ivanciuc, O.1
  • 39
    • 0345548661 scopus 로고    scopus 로고
    • Comparison of support vector machine and artificial neural network systems for drug/nondrug classification
    • 10.1021/ci0341161 1:CAS:528:DC%2BD3sXns1Wmt74%3D 14632437
    • E Byvatov U Fechner J Sadowski G Schneider 2003 Comparison of support vector machine and artificial neural network systems for drug/nondrug classification J Chem Inf Comput Sci 43 1882 1889 10.1021/ci0341161 1:CAS:528:DC%2BD3sXns1Wmt74%3D 14632437
    • (2003) J Chem Inf Comput Sci , vol.43 , pp. 1882-1889
    • Byvatov, E.1    Fechner, U.2    Sadowski, J.3    Schneider, G.4
  • 40
    • 4043071270 scopus 로고    scopus 로고
    • Comparative study of QSAR/QSPR correlations using support vector machines, radial basis function neural networks, and multiple linear regression
    • 10.1021/ci049965i 1:CAS:528:DC%2BD2cXjt12ktb4%3D 15272833
    • XJ Yao A Panaye JP Doucet RS Zhang HF Chen MC Liu ZD Hu T Fan B 2004 Comparative study of QSAR/QSPR correlations using support vector machines, radial basis function neural networks, and multiple linear regression J Chem Inf Comput Sci 44 1257 1266 10.1021/ci049965i 1:CAS:528:DC%2BD2cXjt12ktb4%3D 15272833
    • (2004) J Chem Inf Comput Sci , vol.44 , pp. 1257-1266
    • Yao, X.J.1    Panaye, A.2    Doucet, J.P.3    Zhang, R.S.4    Chen, H.F.5    Liu, M.C.6    Hu, Z.D.7    Fan, B.T.8
  • 41
    • 4043167653 scopus 로고    scopus 로고
    • Data mining and machine learning techniques for the identification of mutagenicity inducing substructures and structure activity relationships of noncongeneric compounds
    • 10.1021/ci034254q 1:CAS:528:DC%2BD2cXks1Gis7Y%3D 15272848
    • C Helma T Cramer S Kramer L De Raedt 2004 Data mining and machine learning techniques for the identification of mutagenicity inducing substructures and structure activity relationships of noncongeneric compounds J Chem Inf Comput Sci 44 1402 1411 10.1021/ci034254q 1:CAS:528: DC%2BD2cXks1Gis7Y%3D 15272848
    • (2004) J Chem Inf Comput Sci , vol.44 , pp. 1402-1411
    • Helma, C.1    Cramer, T.2    Kramer, S.3    De Raedt, L.4
  • 42
    • 5444272497 scopus 로고    scopus 로고
    • Effect of molecular descriptor feature selection in support vector machine classification of pharmacokinetic and toxicological properties of chemical agents
    • 10.1021/ci049869h 1:CAS:528:DC%2BD2cXlsFaht7s%3D 15446820
    • Y Xue ZR Li CW Yap LZ Sun X Chen YZ Chen 2004 Effect of molecular descriptor feature selection in support vector machine classification of pharmacokinetic and toxicological properties of chemical agents J Chem Inf Comput Sci 44 1630 1638 10.1021/ci049869h 1:CAS:528:DC%2BD2cXlsFaht7s%3D 15446820
    • (2004) J Chem Inf Comput Sci , vol.44 , pp. 1630-1638
    • Xue, Y.1    Li, Z.R.2    Yap, C.W.3    Sun, L.Z.4    Chen, X.5    Chen, Y.Z.6
  • 43
    • 78650177310 scopus 로고    scopus 로고
    • SVM applied to structure-activity relationships
    • N. Chen W. Lu J. Yang G. Li (eds). World Scientific Singapore. 10.1142/9789812794710-0009
    • Chen N, Lu W, Yang J, Li G (2004) SVM applied to structure-activity relationships. In: Chen N, Lu W, Yang J, Li G (eds) Support vector machine in chemistry. World Scientific, Singapore, pp 186-219
    • (2004) Support Vector Machine in Chemistry , pp. 186-219
    • Chen, N.1    Lu, W.2    Yang, J.3    Li, G.4
  • 44
    • 20444410410 scopus 로고    scopus 로고
    • Virtual screening of molecular databases using a support vector machine
    • DOI 10.1021/ci049641u
    • RN Jorissen MK Gilson 2005 Virtual screening of molecular databases using a support vector machine J Chem Inf Comput Sci 45 549 561 10.1021/ci049641u 1:CAS:528:DC%2BD2MXjtlWntL0%3D (Pubitemid 40795161)
    • (2005) Journal of Chemical Information and Modeling , vol.45 , Issue.3 , pp. 549-561
    • Jorissen, R.N.1    Gilson, M.K.2
  • 45
    • 33845772315 scopus 로고    scopus 로고
    • Substructure-based support vector machine classifiers for prediction of adverse effects in diverse classes of drugs
    • 10.1021/ci060128l 1:CAS:528:DC%2BD28XpsVKjsrs%3D 10.1021/ci060128l 17125188
    • S Bhavani A Ngargadde A Thawani V Sridhar N Chandra 2006 Substructure-based support vector machine classifiers for prediction of adverse effects in diverse classes of drugs J Chem Inf Model 46 2478 2486 10.1021/ci060128l 1:CAS:528:DC%2BD28XpsVKjsrs%3D 10.1021/ci060128l 17125188
    • (2006) J Chem Inf Model , vol.46 , pp. 2478-2486
    • Bhavani, S.1    Ngargadde, A.2    Thawani, A.3    Sridhar, V.4    Chandra, N.5
  • 47
    • 34547692849 scopus 로고    scopus 로고
    • Radial basis function network-based transform for a nonlinear support vector machine as optimized by a particle swarm optimization algorithm with application to QSAR studies
    • DOI 10.1021/ci700047x
    • L-J Tang Y-P Zhou J-H Jiang H-Y Zou H-L Wu G-L Shen R-Q Yu 2007 Radial basis function network-based transform for a nonlinear support vector machine as optimized by a particle swarm optimization algorithm with application to QSAR studies J Chem Inf Model 47 1438 1445 10.1021/ci700047x 1:CAS:528: DC%2BD2sXmtFOmtbY%3D 10.1021/ci700047x 17555309 (Pubitemid 47210047)
    • (2007) Journal of Chemical Information and Modeling , vol.47 , Issue.4 , pp. 1438-1445
    • Tang, L.-J.1    Zhou, Y.-P.2    Jiang, J.-H.3    Zou, H.-Y.4    Wu, H.-L.5    Shen, G.-L.6    Yu, R.-Q.7
  • 48
    • 37249038567 scopus 로고    scopus 로고
    • Nonlinear SVM approaches to QSPR/QSAR studies and drug design
    • DOI 10.2174/157340907782799372
    • J-P Doucet F Barbault H Xia A Panaye B Fan 2007 Nonlinear SVM approaches to QSPR/QSAR studies and drug design Curr Comp Aid Drug Design 3 263 289 10.2174/157340907782799372 1:CAS:528:DC%2BD1cXitVSqtLk%3D 10.2174/ 157340907782799372 (Pubitemid 350268174)
    • (2007) Current Computer-Aided Drug Design , vol.3 , Issue.4 , pp. 263-289
    • Doucet, J.-P.1    Barbault, F.2    Xia, H.3    Panaye, A.4    Fan, B.5
  • 49
    • 78650179803 scopus 로고    scopus 로고
    • Prediction of carcinogenicity of noncongeneric chemical substances by a support vector machine
    • 10.2477/jccj.H1921 1:CAS:528:DC%2BD1cXht1WjsrnO 10.2477/jccj.H1921
    • K Tanabe T Suzuki M Kaihara N Onodera 2008 Prediction of carcinogenicity of noncongeneric chemical substances by a support vector machine J Comput Chem Jpn 7 93 102 10.2477/jccj.H1921 1:CAS:528:DC%2BD1cXht1WjsrnO 10.2477/jccj.H1921
    • (2008) J Comput Chem Jpn , vol.7 , pp. 93-102
    • Tanabe, K.1    Suzuki, T.2    Kaihara, M.3    Onodera, N.4
  • 50
    • 4043092665 scopus 로고    scopus 로고
    • Support vector machine classification of the carcinogenic activity of polycyclic aromatic hydrocarbons
    • 1:CAS:528:DC%2BD38XlvVCit70%3D
    • O Ivanciuc 2002 Support vector machine classification of the carcinogenic activity of polycyclic aromatic hydrocarbons Internet Electron J Mol Design 1 203 218 1:CAS:528:DC%2BD38XlvVCit70%3D
    • (2002) Internet Electron J Mol Design , vol.1 , pp. 203-218
    • Ivanciuc, O.1
  • 51
    • 13844270855 scopus 로고    scopus 로고
    • Classification of the carcinogenicity of N-nitroso compounds based on support vector machines and linear discriminant analysis
    • DOI 10.1021/tx049782q
    • F Luan R Zhang C Zhao X Yao M Liu Z Hu B Fan 2005 Classification of the carcinogenicity of N-nitroso compounds based on support vector machines and linear discriminant analysis Chem Res Toxicol 18 198 203 10.1021/tx049782q 1:CAS:528:DC%2BD2MXovFSk 10.1021/tx049782q 15720123 (Pubitemid 40256237)
    • (2005) Chemical Research in Toxicology , vol.18 , Issue.2 , pp. 198-203
    • Luan, F.1    Zhang, R.2    Zhao, C.3    Yao, X.4    Liu, M.5    Hu, Z.6    Fan, B.7
  • 53
    • 78650177660 scopus 로고    scopus 로고
    • Toxicity ranks and physical property information for PRTR-MSDS chemical substances, Chap 2
    • Kagaku Kogyo Nippo, Tokyo
    • Urano K (2001) Toxicity ranks and physical property information for PRTR-MSDS chemical substances, Chap 2. In: Rank of carcinogenicity. Kagaku Kogyo Nippo, Tokyo, pp 21-23
    • (2001) Rank of Carcinogenicity , pp. 21-23
    • Urano, K.1
  • 59
    • 68349135029 scopus 로고    scopus 로고
    • QSAR modelling of carcinogenicity by balance of correlations
    • 10.1007/s11030-009-9113-4 1:CAS:528:DC%2BD1MXovFSjsr0%3D 10.1007/s11030-009-9113-4
    • AA Toropov AP Toropova E Benfenati A Manganaro 2009 QSAR modelling of carcinogenicity by balance of correlations Mol Div 13 367 373 10.1007/s11030-009-9113-4 1:CAS:528:DC%2BD1MXovFSjsr0%3D 10.1007/s11030-009- 9113-4
    • (2009) Mol Div , vol.13 , pp. 367-373
    • Toropov, A.A.1    Toropova, A.P.2    Benfenati, E.3    Manganaro, A.4
  • 60
    • 78650176178 scopus 로고    scopus 로고
    • Quantitative and qualitative models for carcinogenicity prediction for non-congeneric chemicals using CP ANN method for regulatory uses
    • doi: 10.1007/s11030-009-9190-4
    • Fjodorova N, Vračko M, Tušar M, Jezierska A, Novič M, Kühne R, Schüürmann G (2009) Quantitative and qualitative models for carcinogenicity prediction for non-congeneric chemicals using CP ANN method for regulatory uses. Mol Divers. doi: 10.1007/s11030-009-9190-4.
    • (2009) Mol Divers
    • Fjodorova N, V.1
  • 61
    • 68949156167 scopus 로고    scopus 로고
    • Additive SMILES-based carcinogenicity models: Probabilistic principles in the search for robust predictions
    • 10.3390/ijms10073106 1:CAS:528:DC%2BD1MXosFOmtbc%3D 10.3390/ijms10073106 19742127
    • AA Toropov AP Toropova E Benfenati 2009 Additive SMILES-based carcinogenicity models: probabilistic principles in the search for robust predictions Int J Mol Sci 10 3106 3127 10.3390/ijms10073106 1:CAS:528: DC%2BD1MXosFOmtbc%3D 10.3390/ijms10073106 19742127
    • (2009) Int J Mol Sci , vol.10 , pp. 3106-3127
    • Toropov, A.A.1    Toropova, A.P.2    Benfenati, E.3
  • 62
    • 67650878964 scopus 로고    scopus 로고
    • Prediction of chemical carcinogenicity by machine learning approaches
    • 10.1080/10629360902724085 1:CAS:528:DC%2BD1MXhtVKqsbnM 10.1080/10629360902724085 19343583
    • NX Tan HB Rao ZR Li XY Li 2009 Prediction of chemical carcinogenicity by machine learning approaches SAR QSAR Environ Res 20 27 75 10.1080/ 10629360902724085 1:CAS:528:DC%2BD1MXhtVKqsbnM 10.1080/10629360902724085 19343583
    • (2009) SAR QSAR Environ Res , vol.20 , pp. 27-75
    • Tan, N.X.1    Rao, H.B.2    Li, Z.R.3    Li, X.Y.4
  • 63
    • 58149457545 scopus 로고    scopus 로고
    • Development of quantitative structure-activity relationship (QSAR) models to predict the carcinogenic potency of chemicals I. Alternative toxicity measures as an estimator of carcinogenic potency
    • 10.1016/j.taap.2008.09.028 1:CAS:528:DC%2BD1MXksVensQ%3D%3D 10.1016/j.taap.2008.09.028 18977375
    • R Venkatapathy CY Wang RM Bruce C Moudgal 2009 Development of quantitative structure-activity relationship (QSAR) models to predict the carcinogenic potency of chemicals I. Alternative toxicity measures as an estimator of carcinogenic potency Toxicol Appl Pharmacol 234 209 221 10.1016/j.taap.2008.09.028 1:CAS:528:DC%2BD1MXksVensQ%3D%3D 10.1016/j.taap.2008. 09.028 18977375
    • (2009) Toxicol Appl Pharmacol , vol.234 , pp. 209-221
    • Venkatapathy, R.1    Wang, C.Y.2    Bruce, R.M.3    Moudgal, C.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.