-
1
-
-
0019829568
-
The causes of cancer: Quantitative estimates of avoidable risks of cancer in the United States today
-
R Doll R Peto 1981 The causes of cancer: quantitative estimates of avoidable risks of cancer in the United States today J Natl Cancer Inst 66 1192 1309
-
(1981)
J Natl Cancer Inst
, vol.66
, pp. 1192-1309
-
-
Doll, R.1
Peto, R.2
-
3
-
-
0033655505
-
A study of structure-carcinogenicity relationship for 86 compounds from NTP database using topological indexes as descriptors
-
10.1080/10629360008039117 1:CAS:528:DC%2BD3cXjvFOns7c%3D 10.1080/10629360008039117 10877472
-
M Vracko 2000 A study of structure-carcinogenicity relationship for 86 compounds from NTP database using topological indexes as descriptors SAR QSAR Environ Res 11 103 115 10.1080/10629360008039117 1:CAS:528:DC%2BD3cXjvFOns7c%3D 10.1080/10629360008039117 10877472
-
(2000)
SAR QSAR Environ Res
, vol.11
, pp. 103-115
-
-
Vracko, M.1
-
5
-
-
0142088806
-
Quantitative structure-activity relationships for predicting mutagenicity and carcinogenicity
-
DOI 10.1897/01-461
-
G Patlewicz R Rodford JD Walker 2003 Quantitative structure-activity relationships for predicting mutagenicity and carcinogenicity Environ Toxicol Chem 22 1885 1893 10.1897/01-461 1:CAS:528:DC%2BD3sXotF2gs7k%3D 10.1897/01-461 12924587 (Pubitemid 37337312)
-
(2003)
Environmental Toxicology and Chemistry
, vol.22
, Issue.8
, pp. 1885-1893
-
-
Patlewicz, G.1
Rodford, R.2
Walker, J.D.3
-
6
-
-
33845920205
-
Prediction of human health endpoints: Mutagenicity and carcinogenicity
-
M.T.D. Cronin D.J. Livingstone (eds). CRC Press Boca Raton
-
Benigni R (2004) Prediction of human health endpoints: mutagenicity and carcinogenicity. In: Cronin MTD, Livingstone DJ (eds) Predicting chemical toxicity and fate. CRC Press, Boca Raton, pp 173-192
-
(2004)
Predicting Chemical Toxicity and Fate
, pp. 173-192
-
-
Benigni, R.1
-
7
-
-
4043086954
-
Prediction of chemical carcinogenicity from molecular structure
-
10.1021/ci049917y 1:CAS:528:DC%2BD2cXktVKlsLo%3D 15272859
-
H Sun 2004 Prediction of chemical carcinogenicity from molecular structure J Chem Inf Comput Sci 44 1506 1514 10.1021/ci049917y 1:CAS:528:DC%2BD2cXktVKlsLo%3D 15272859
-
(2004)
J Chem Inf Comput Sci
, vol.44
, pp. 1506-1514
-
-
Sun, H.1
-
8
-
-
28944440014
-
Prediction of the rodent carcinogenicity of 60 pesticides by the DEREKfW expert system
-
DOI 10.1021/ci050150z
-
P Crettaz R Benigni 2005 Prediction of the rodent carcinogenicity of 60 pesticides by the DEREKfw expert system J Chem Inf Comput Sci 45 1864 1873 10.1021/ci050150z 1:CAS:528:DC%2BD2MXhtVCjsr3M (Pubitemid 41784761)
-
(2005)
Journal of Chemical Information and Modeling
, vol.45
, Issue.6
, pp. 1864-1873
-
-
Crettaz, P.1
Benigni, R.2
-
9
-
-
32044469800
-
The prediction of carcinogenicity from molecular structure
-
1:CAS:528:DC%2BD2MXmsVehsbo%3D 10.2174/1573409054367655
-
AM Helguera MCA Perez RD Combes MP Gonzalez 2005 The prediction of carcinogenicity from molecular structure Curr Comp Aid Drug Des 1 237 255 1:CAS:528:DC%2BD2MXmsVehsbo%3D 10.2174/1573409054367655
-
(2005)
Curr Comp Aid Drug des
, vol.1
, pp. 237-255
-
-
Helguera, A.M.1
Perez, M.C.A.2
Combes, R.D.3
Gonzalez, M.P.4
-
10
-
-
21744437416
-
QSAR modeling of carcinogenic risk using discriminant analysis and topological molecular descriptors
-
DOI 10.2174/1570163054064684
-
JF Contrera P MacLaughlin LH Hall LB Kier 2005 QSAR modeling of carcinogenic risk using discriminant analysis and topological molecular descriptors Curr Drug Discov Tech 2 55 67 10.2174/1570163054064684 1:CAS:528:DC%2BD2MXmtVOrsb0%3D 10.2174/1570163054064684 (Pubitemid 40943977)
-
(2005)
Current Drug Discovery Technologies
, vol.2
, Issue.2
, pp. 55-67
-
-
Contrera, J.F.1
MacLaughlin, P.2
Hall, L.H.3
Kier, L.B.4
-
11
-
-
45749145250
-
Predictivity of QSAR
-
10.1021/ci8000088 1:CAS:528:DC%2BD1cXkvFartLk%3D 10.1021/ci8000088 18426198
-
R Benigni C Bossa 2008 Predictivity of QSAR J Chem Inf Model 48 971 980 10.1021/ci8000088 1:CAS:528:DC%2BD1cXkvFartLk%3D 10.1021/ci8000088 18426198
-
(2008)
J Chem Inf Model
, vol.48
, pp. 971-980
-
-
Benigni, R.1
Bossa, C.2
-
12
-
-
0034301460
-
Quantitative structure-activity relationships of mutagenic and carcinogenic aromatic amines
-
10.1021/cr9901079 1:CAS:528:DC%2BD3cXlslSku7g%3D 10.1021/cr9901079 11749325
-
R Benigni A Giuliani R Franke A Gruska 2000 Quantitative structure-activity relationships of mutagenic and carcinogenic aromatic amines Chem Rev 100 3697 3714 10.1021/cr9901079 1:CAS:528:DC%2BD3cXlslSku7g%3D 10.1021/cr9901079 11749325
-
(2000)
Chem Rev
, vol.100
, pp. 3697-3714
-
-
Benigni, R.1
Giuliani, A.2
Franke, R.3
Gruska, A.4
-
13
-
-
0034807089
-
Prediction of rodent carcinogenicity of aromatic amines: A quantitative structure-activity relationships model
-
1:CAS:528:DC%2BD3MXmvVylsr0%3D 10.1093/carcin/22.9.1561
-
R Franke A Gruska A Giuliani R Benigni 2001 Prediction of rodent carcinogenicity of aromatic amines: a quantitative structure-activity relationships model Carcinogenisis 22 1561 1571 1:CAS:528:DC%2BD3MXmvVylsr0%3D 10.1093/carcin/22.9.1561
-
(2001)
Carcinogenisis
, vol.22
, pp. 1561-1571
-
-
Franke, R.1
Gruska, A.2
Giuliani, A.3
Benigni, R.4
-
14
-
-
77953213503
-
QSARs for the mutagenicity and carcinogenicity of the aromatic amines
-
R. Benigni (eds). CRC Press Boca Raton. 10.1201/9780203010822
-
Benigni R, Giuliani A, Gruska A, Franke R (2003) QSARs for the mutagenicity and carcinogenicity of the aromatic amines. In: Benigni R (eds) Quantitative structure-activity relationship (QSAR) models of mutagens and carcinogens. CRC Press, Boca Raton, pp 125-144
-
(2003)
Quantitative Structure-activity Relationship (QSAR) Models of Mutagens and Carcinogens
, pp. 125-144
-
-
Benigni, R.1
Giuliani, A.2
Gruska, A.3
Franke, R.4
-
15
-
-
0033219692
-
Structure-activity relationships of carcinogenic activity of polycyclic aromatic hydrocarbons using calculated molecular descriptors with principal component analysis and neural network methods
-
10.1021/ci990326v 1:CAS:528:DyaK1MXms1eju74%3D 10614026
-
R Vendrame RS Braga Y Takahata DS Galvao 1999 Structure-activity relationships of carcinogenic activity of polycyclic aromatic hydrocarbons using calculated molecular descriptors with principal component analysis and neural network methods J Chem Inf Comput Sci 39 1094 1104 10.1021/ci990326v 1:CAS:528:DyaK1MXms1eju74%3D 10614026
-
(1999)
J Chem Inf Comput Sci
, vol.39
, pp. 1094-1104
-
-
Vendrame, R.1
Braga, R.S.2
Takahata, Y.3
Galvao, D.S.4
-
16
-
-
0033580531
-
Identifying carcinogenic activity of methylated polycyclic aromatic hydrocarbons (PAHs)
-
10.1016/S0166-1280(98)00557-0 1:CAS:528:DyaK1MXjtVyntb4%3D
-
RS Braga PMVB Barone DS Galvao 1999 Identifying carcinogenic activity of methylated polycyclic aromatic hydrocarbons (PAHs) J Mol Struct 464 257 266 10.1016/S0166-1280(98)00557-0 1:CAS:528:DyaK1MXjtVyntb4%3D
-
(1999)
J Mol Struct
, vol.464
, pp. 257-266
-
-
Braga, R.S.1
Pmvb, B.2
Galvao, D.S.3
-
17
-
-
0037363602
-
QSAR model of PAHs carcinogenesis based on thermodynamic stabilities of bioactive sites
-
10.1021/ci0256135 1:CAS:528:DC%2BD3sXptVSitw%3D%3D 12653529
-
Z Zhou Q Dai TA Gu 2003 QSAR model of PAHs carcinogenesis based on thermodynamic stabilities of bioactive sites J Chem Inf Comput Sci 43 615 621 10.1021/ci0256135 1:CAS:528:DC%2BD3sXptVSitw%3D%3D 12653529
-
(2003)
J Chem Inf Comput Sci
, vol.43
, pp. 615-621
-
-
Zhou, Z.1
Dai, Q.2
Gu, T.A.3
-
18
-
-
77953213503
-
SARs and QSARs of mutagens and carcinogens: Understanding action mechanisms and improving risk assessment
-
R. Benigni (eds). CRC Press Boca Raton. 10.1201/9780203010822
-
Benigni R (2003) SARs and QSARs of mutagens and carcinogens: understanding action mechanisms and improving risk assessment. In: Benigni R (eds) Quantitative structure-activity relationship (QSAR) models of mutagens and carcinogens. CRC Press, Boca Raton, pp 259-282
-
(2003)
Quantitative Structure-activity Relationship (QSAR) Models of Mutagens and Carcinogens
, pp. 259-282
-
-
Benigni, R.1
-
19
-
-
20044383057
-
Structure-activity relationship studies of chemical mutagens and carcinogens: Mechanistic investigations and prediction approaches
-
DOI 10.1021/cr030049y
-
R Benigni 2005 Structure-activity relationship studies of chemical mutagens and carcinogens: Mechanistic investigations and prediction approaches Chem Rev 105 1767 1800 10.1021/cr030049y 1:CAS:528:DC%2BD2MXit1Oisr8%3D 10.1021/cr030049y 15884789 (Pubitemid 40773667)
-
(2005)
Chemical Reviews
, vol.105
, Issue.5
, pp. 1767-1800
-
-
Benigni, R.1
-
21
-
-
0038156116
-
A survey of the predictive toxicology challenge 2000-2001
-
DOI 10.1093/bioinformatics/btg084
-
C Helma S Kramer 2003 A survey of the predictive toxicology challenge 2000-2001 Bioinformatics 19 1179 1182 1:CAS:528:DC%2BD3sXmtF2kurw%3D 10.1093/bioinformatics/btg084 12835259 (Pubitemid 36850209)
-
(2003)
Bioinformatics
, vol.19
, Issue.10
, pp. 1179-1182
-
-
Helma, C.1
Kramer, S.2
-
22
-
-
66849142654
-
Drug design with machine learning
-
R.A. Meyers (eds). Springer-Verlag New York
-
Ivanciuc O (2009) Drug design with machine learning. In: Meyers RA (eds) Encyclopedia of complexity and system science. Springer-Verlag, New York
-
(2009)
Encyclopedia of Complexity and System Science
-
-
Ivanciuc, O.1
-
24
-
-
42149179358
-
Hidden active information in a random compound library: Extraction using a pseudo-structure-activity relationship model
-
DOI 10.1021/ci7003384
-
H Fukunishi R Teramoto J Shimada 2008 Hidden active information in a random compound library: Extraction using a pseudo-structure-activity relationship model J Chem Inf Model 48 575 582 10.1021/ci7003384 1:CAS:528:DC%2BD1cXitVals74%3D 10.1021/ci7003384 18278890 (Pubitemid 351535425)
-
(2008)
Journal of Chemical Information and Modeling
, vol.48
, Issue.3
, pp. 575-582
-
-
Fukunishi, H.1
Teramoto, R.2
Shimada, J.3
-
25
-
-
54249123263
-
Accurate and interpretable computational modeling of chemical mutagenicity
-
10.1021/ci800094a 1:CAS:528:DC%2BD1cXhtVOmt77P 10.1021/ci800094a 18771257
-
JJ Langham AN Jain 2008 Accurate and interpretable computational modeling of chemical mutagenicity J Chem Inf Model 48 1833 1839 10.1021/ci800094a 1:CAS:528:DC%2BD1cXhtVOmt77P 10.1021/ci800094a 18771257
-
(2008)
J Chem Inf Model
, vol.48
, pp. 1833-1839
-
-
Langham, J.J.1
Jain, A.N.2
-
26
-
-
71249126927
-
Feature selection for the imbalanced QSAR problems by using EasyEnsemble
-
10.1504/IJCBDD.2008.022206 1:CAS:528:DC%2BD1MXkt12nsbw%3D 10.1504/IJCBDD.2008.022206
-
T-Y Liu G-Z Li JY Yang MQ Yang 2008 Feature selection for the imbalanced QSAR problems by using EasyEnsemble Int J Comput Biol Drug Design 1 334 346 10.1504/IJCBDD.2008.022206 1:CAS:528:DC%2BD1MXkt12nsbw%3D 10.1504/IJCBDD.2008. 022206
-
(2008)
Int J Comput Biol Drug Design
, vol.1
, pp. 334-346
-
-
Liu, T.-Y.1
Li, G.-Z.2
Yang, J.Y.3
Yang, M.Q.4
-
27
-
-
84974803514
-
Mechanisms of action of chemical carcinogens and their role in structure-activity relationship (SAR) analysis and risk assessment
-
R. Benigni (eds). CRC Press Boca Raton
-
Woo Y-T, Lai DY (2003) Mechanisms of action of chemical carcinogens and their role in structure-activity relationship (SAR) analysis and risk assessment. In: Benigni R (eds) Quantitative structure-activity relationship (QSAR) models of mutagens and carcinogens. CRC Press, Boca Raton, pp 41-80
-
(2003)
Quantitative Structure-activity Relationship (QSAR) Models of Mutagens and Carcinogens
, pp. 41-80
-
-
Woo, Y.-T.1
Lai, D.Y.2
-
29
-
-
78650174063
-
Quantitative structure-activity relationships
-
J. Zupan J. Gasteiger (eds). 2 Weinheim Wiley-VCH
-
Zupan J, Gasteiger J (1999) Quantitative structure-activity relationships. In: Zupan J, Gasteiger J (eds) Neural networks in chemistry and drug design, 2nd edn. Weinheim, Wiley-VCH, pp 219-242
-
(1999)
Neural Networks in Chemistry and Drug Design
, pp. 219-242
-
-
Zupan, J.1
Gasteiger, J.2
-
30
-
-
0034367139
-
Artificial neural networks and their use in chemistry
-
K.B. Lipkowitz D.B. Boyd (eds). Wiley-VCH New York. 10.1002/ 9780470125939.ch2
-
Peterson KL (2000) Artificial neural networks and their use in chemistry. In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry. Wiley-VCH, New York, pp 53-140
-
(2000)
Reviews in Computational Chemistry
, vol.16
, pp. 53-140
-
-
Peterson, K.L.1
-
31
-
-
66849094234
-
Drug design with artificial neural networks
-
R.A. Meyers (eds). Springer-Verlag New York
-
Ivanciuc O (2009) Drug design with artificial neural networks. In: Meyers RA (eds) Encyclopedia of complexity and system science. Springer-Verlag, New York
-
(2009)
Encyclopedia of Complexity and System Science
-
-
Ivanciuc, O.1
-
32
-
-
0034218972
-
Use of statistical and neural net approaches in predicting toxicity of chemicals
-
10.1021/ci9901136 1:CAS:528:DC%2BD3cXktFOhsro%3D 10955514
-
SC Basak GD Grunwald BD Gute K Balasubramanian D Optiz 2000 Use of statistical and neural net approaches in predicting toxicity of chemicals J Chem Inf Comput Sci 40 885 890 10.1021/ci9901136 1:CAS:528:DC%2BD3cXktFOhsro%3D 10955514
-
(2000)
J Chem Inf Comput Sci
, vol.40
, pp. 885-890
-
-
Basak, S.C.1
Grunwald, G.D.2
Gute, B.D.3
Balasubramanian, K.4
Optiz, D.5
-
33
-
-
0034221206
-
Symbolic, neural, and Bayesian machine learning models for predicting carcinogenicity of chemical compounds
-
10.1021/ci990116i 1:CAS:528:DC%2BD3cXltVyns74%3D 10955517
-
D Bahler B Stone C Wellington D Bristol 2000 Symbolic, neural, and Bayesian machine learning models for predicting carcinogenicity of chemical compounds J Chem Inf Comput Sci 40 906 914 10.1021/ci990116i 1:CAS:528:DC%2BD3cXltVyns74%3D 10955517
-
(2000)
J Chem Inf Comput Sci
, vol.40
, pp. 906-914
-
-
Bahler, D.1
Stone, B.2
Wellington, C.3
Bristol, D.4
-
34
-
-
13844316617
-
Toward an optimal procedure for PC-ANN model building: Prediction of the carcinogenic activity of a large set of drugs
-
DOI 10.1021/ci049766z
-
B Hemmateenejad M Safarpour R Miri N Nesari 2005 Toward an optimal procedure for PC-ANN model building: prediction of the carcinogenic activity of a large set of drugs J Chem Inf Model 45 190 199 10.1021/ci049766z 1:CAS:528:DC%2BD2cXhtVGhs7fN 10.1021/ci049766z 15667145 (Pubitemid 40736972)
-
(2005)
Journal of Chemical Information and Modeling
, vol.45
, Issue.1
, pp. 190-199
-
-
Hemmateenejad, B.1
Safarpour, M.A.2
Miri, R.3
Nesari, N.4
-
35
-
-
0000381846
-
Strengths and weaknesses of the back-propagation neural network in QSAR and QSPR studies
-
J. Devillers (eds). Academic Press London. 10.1016/B978-012213815-7/ 50002-9
-
Devillers J (1996) Strengths and weaknesses of the back-propagation neural network in QSAR and QSPR studies. In: Devillers J (eds) Neural networks in QSAR and drug design. Academic Press, London, pp 1-46
-
(1996)
Neural Networks in QSAR and Drug Design
, pp. 1-46
-
-
Devillers, J.1
-
36
-
-
78650178810
-
Neural network prediction of carcinogenicity of diverse organic compounds
-
10.2477/jccj.4.89 1:CAS:528:DC%2BD2MXht1GjtbzM 10.2477/jccj.4.89
-
K Tanabe N Ohmori S Ono T Suzuki T Matsumoto U Nagashima H Uesaka 2005 Neural network prediction of carcinogenicity of diverse organic compounds J Comput Chem Jpn 4 89 100 10.2477/jccj.4.89 1:CAS:528:DC%2BD2MXht1GjtbzM 10.2477/jccj.4.89
-
(2005)
J Comput Chem Jpn
, vol.4
, pp. 89-100
-
-
Tanabe, K.1
Ohmori, N.2
Ono, S.3
Suzuki, T.4
Matsumoto, T.5
Nagashima, U.6
Uesaka, H.7
-
37
-
-
27744504615
-
-
N. Chen W. Lu J. Yang G. Li (eds). World Scientific Singapore
-
Chen, N, Lu, W, Yang, J, Li, G (eds) (2004) Support vector machine in chemistry. World Scientific, Singapore
-
(2004)
Support Vector Machine in Chemistry
-
-
-
38
-
-
34848824629
-
Applications of support vector machines in chemistry
-
10.1002/9780470116449.ch6 1:CAS:528:DC%2BD2sXisFWquro%3D 10.1002/9780470116449.ch6
-
O Ivanciuc 2007 Applications of support vector machines in chemistry Rev Comput Chem 23 291 400 10.1002/9780470116449.ch6 1:CAS:528:DC%2BD2sXisFWquro%3D 10.1002/9780470116449.ch6
-
(2007)
Rev Comput Chem
, vol.23
, pp. 291-400
-
-
Ivanciuc, O.1
-
39
-
-
0345548661
-
Comparison of support vector machine and artificial neural network systems for drug/nondrug classification
-
10.1021/ci0341161 1:CAS:528:DC%2BD3sXns1Wmt74%3D 14632437
-
E Byvatov U Fechner J Sadowski G Schneider 2003 Comparison of support vector machine and artificial neural network systems for drug/nondrug classification J Chem Inf Comput Sci 43 1882 1889 10.1021/ci0341161 1:CAS:528:DC%2BD3sXns1Wmt74%3D 14632437
-
(2003)
J Chem Inf Comput Sci
, vol.43
, pp. 1882-1889
-
-
Byvatov, E.1
Fechner, U.2
Sadowski, J.3
Schneider, G.4
-
40
-
-
4043071270
-
Comparative study of QSAR/QSPR correlations using support vector machines, radial basis function neural networks, and multiple linear regression
-
10.1021/ci049965i 1:CAS:528:DC%2BD2cXjt12ktb4%3D 15272833
-
XJ Yao A Panaye JP Doucet RS Zhang HF Chen MC Liu ZD Hu T Fan B 2004 Comparative study of QSAR/QSPR correlations using support vector machines, radial basis function neural networks, and multiple linear regression J Chem Inf Comput Sci 44 1257 1266 10.1021/ci049965i 1:CAS:528:DC%2BD2cXjt12ktb4%3D 15272833
-
(2004)
J Chem Inf Comput Sci
, vol.44
, pp. 1257-1266
-
-
Yao, X.J.1
Panaye, A.2
Doucet, J.P.3
Zhang, R.S.4
Chen, H.F.5
Liu, M.C.6
Hu, Z.D.7
Fan, B.T.8
-
41
-
-
4043167653
-
Data mining and machine learning techniques for the identification of mutagenicity inducing substructures and structure activity relationships of noncongeneric compounds
-
10.1021/ci034254q 1:CAS:528:DC%2BD2cXks1Gis7Y%3D 15272848
-
C Helma T Cramer S Kramer L De Raedt 2004 Data mining and machine learning techniques for the identification of mutagenicity inducing substructures and structure activity relationships of noncongeneric compounds J Chem Inf Comput Sci 44 1402 1411 10.1021/ci034254q 1:CAS:528: DC%2BD2cXks1Gis7Y%3D 15272848
-
(2004)
J Chem Inf Comput Sci
, vol.44
, pp. 1402-1411
-
-
Helma, C.1
Cramer, T.2
Kramer, S.3
De Raedt, L.4
-
42
-
-
5444272497
-
Effect of molecular descriptor feature selection in support vector machine classification of pharmacokinetic and toxicological properties of chemical agents
-
10.1021/ci049869h 1:CAS:528:DC%2BD2cXlsFaht7s%3D 15446820
-
Y Xue ZR Li CW Yap LZ Sun X Chen YZ Chen 2004 Effect of molecular descriptor feature selection in support vector machine classification of pharmacokinetic and toxicological properties of chemical agents J Chem Inf Comput Sci 44 1630 1638 10.1021/ci049869h 1:CAS:528:DC%2BD2cXlsFaht7s%3D 15446820
-
(2004)
J Chem Inf Comput Sci
, vol.44
, pp. 1630-1638
-
-
Xue, Y.1
Li, Z.R.2
Yap, C.W.3
Sun, L.Z.4
Chen, X.5
Chen, Y.Z.6
-
43
-
-
78650177310
-
SVM applied to structure-activity relationships
-
N. Chen W. Lu J. Yang G. Li (eds). World Scientific Singapore. 10.1142/9789812794710-0009
-
Chen N, Lu W, Yang J, Li G (2004) SVM applied to structure-activity relationships. In: Chen N, Lu W, Yang J, Li G (eds) Support vector machine in chemistry. World Scientific, Singapore, pp 186-219
-
(2004)
Support Vector Machine in Chemistry
, pp. 186-219
-
-
Chen, N.1
Lu, W.2
Yang, J.3
Li, G.4
-
44
-
-
20444410410
-
Virtual screening of molecular databases using a support vector machine
-
DOI 10.1021/ci049641u
-
RN Jorissen MK Gilson 2005 Virtual screening of molecular databases using a support vector machine J Chem Inf Comput Sci 45 549 561 10.1021/ci049641u 1:CAS:528:DC%2BD2MXjtlWntL0%3D (Pubitemid 40795161)
-
(2005)
Journal of Chemical Information and Modeling
, vol.45
, Issue.3
, pp. 549-561
-
-
Jorissen, R.N.1
Gilson, M.K.2
-
45
-
-
33845772315
-
Substructure-based support vector machine classifiers for prediction of adverse effects in diverse classes of drugs
-
10.1021/ci060128l 1:CAS:528:DC%2BD28XpsVKjsrs%3D 10.1021/ci060128l 17125188
-
S Bhavani A Ngargadde A Thawani V Sridhar N Chandra 2006 Substructure-based support vector machine classifiers for prediction of adverse effects in diverse classes of drugs J Chem Inf Model 46 2478 2486 10.1021/ci060128l 1:CAS:528:DC%2BD28XpsVKjsrs%3D 10.1021/ci060128l 17125188
-
(2006)
J Chem Inf Model
, vol.46
, pp. 2478-2486
-
-
Bhavani, S.1
Ngargadde, A.2
Thawani, A.3
Sridhar, V.4
Chandra, N.5
-
47
-
-
34547692849
-
Radial basis function network-based transform for a nonlinear support vector machine as optimized by a particle swarm optimization algorithm with application to QSAR studies
-
DOI 10.1021/ci700047x
-
L-J Tang Y-P Zhou J-H Jiang H-Y Zou H-L Wu G-L Shen R-Q Yu 2007 Radial basis function network-based transform for a nonlinear support vector machine as optimized by a particle swarm optimization algorithm with application to QSAR studies J Chem Inf Model 47 1438 1445 10.1021/ci700047x 1:CAS:528: DC%2BD2sXmtFOmtbY%3D 10.1021/ci700047x 17555309 (Pubitemid 47210047)
-
(2007)
Journal of Chemical Information and Modeling
, vol.47
, Issue.4
, pp. 1438-1445
-
-
Tang, L.-J.1
Zhou, Y.-P.2
Jiang, J.-H.3
Zou, H.-Y.4
Wu, H.-L.5
Shen, G.-L.6
Yu, R.-Q.7
-
48
-
-
37249038567
-
Nonlinear SVM approaches to QSPR/QSAR studies and drug design
-
DOI 10.2174/157340907782799372
-
J-P Doucet F Barbault H Xia A Panaye B Fan 2007 Nonlinear SVM approaches to QSPR/QSAR studies and drug design Curr Comp Aid Drug Design 3 263 289 10.2174/157340907782799372 1:CAS:528:DC%2BD1cXitVSqtLk%3D 10.2174/ 157340907782799372 (Pubitemid 350268174)
-
(2007)
Current Computer-Aided Drug Design
, vol.3
, Issue.4
, pp. 263-289
-
-
Doucet, J.-P.1
Barbault, F.2
Xia, H.3
Panaye, A.4
Fan, B.5
-
49
-
-
78650179803
-
Prediction of carcinogenicity of noncongeneric chemical substances by a support vector machine
-
10.2477/jccj.H1921 1:CAS:528:DC%2BD1cXht1WjsrnO 10.2477/jccj.H1921
-
K Tanabe T Suzuki M Kaihara N Onodera 2008 Prediction of carcinogenicity of noncongeneric chemical substances by a support vector machine J Comput Chem Jpn 7 93 102 10.2477/jccj.H1921 1:CAS:528:DC%2BD1cXht1WjsrnO 10.2477/jccj.H1921
-
(2008)
J Comput Chem Jpn
, vol.7
, pp. 93-102
-
-
Tanabe, K.1
Suzuki, T.2
Kaihara, M.3
Onodera, N.4
-
50
-
-
4043092665
-
Support vector machine classification of the carcinogenic activity of polycyclic aromatic hydrocarbons
-
1:CAS:528:DC%2BD38XlvVCit70%3D
-
O Ivanciuc 2002 Support vector machine classification of the carcinogenic activity of polycyclic aromatic hydrocarbons Internet Electron J Mol Design 1 203 218 1:CAS:528:DC%2BD38XlvVCit70%3D
-
(2002)
Internet Electron J Mol Design
, vol.1
, pp. 203-218
-
-
Ivanciuc, O.1
-
51
-
-
13844270855
-
Classification of the carcinogenicity of N-nitroso compounds based on support vector machines and linear discriminant analysis
-
DOI 10.1021/tx049782q
-
F Luan R Zhang C Zhao X Yao M Liu Z Hu B Fan 2005 Classification of the carcinogenicity of N-nitroso compounds based on support vector machines and linear discriminant analysis Chem Res Toxicol 18 198 203 10.1021/tx049782q 1:CAS:528:DC%2BD2MXovFSk 10.1021/tx049782q 15720123 (Pubitemid 40256237)
-
(2005)
Chemical Research in Toxicology
, vol.18
, Issue.2
, pp. 198-203
-
-
Luan, F.1
Zhang, R.2
Zhao, C.3
Yao, X.4
Liu, M.5
Hu, Z.6
Fan, B.7
-
53
-
-
78650177660
-
Toxicity ranks and physical property information for PRTR-MSDS chemical substances, Chap 2
-
Kagaku Kogyo Nippo, Tokyo
-
Urano K (2001) Toxicity ranks and physical property information for PRTR-MSDS chemical substances, Chap 2. In: Rank of carcinogenicity. Kagaku Kogyo Nippo, Tokyo, pp 21-23
-
(2001)
Rank of Carcinogenicity
, pp. 21-23
-
-
Urano, K.1
-
59
-
-
68349135029
-
QSAR modelling of carcinogenicity by balance of correlations
-
10.1007/s11030-009-9113-4 1:CAS:528:DC%2BD1MXovFSjsr0%3D 10.1007/s11030-009-9113-4
-
AA Toropov AP Toropova E Benfenati A Manganaro 2009 QSAR modelling of carcinogenicity by balance of correlations Mol Div 13 367 373 10.1007/s11030-009-9113-4 1:CAS:528:DC%2BD1MXovFSjsr0%3D 10.1007/s11030-009- 9113-4
-
(2009)
Mol Div
, vol.13
, pp. 367-373
-
-
Toropov, A.A.1
Toropova, A.P.2
Benfenati, E.3
Manganaro, A.4
-
60
-
-
78650176178
-
Quantitative and qualitative models for carcinogenicity prediction for non-congeneric chemicals using CP ANN method for regulatory uses
-
doi: 10.1007/s11030-009-9190-4
-
Fjodorova N, Vračko M, Tušar M, Jezierska A, Novič M, Kühne R, Schüürmann G (2009) Quantitative and qualitative models for carcinogenicity prediction for non-congeneric chemicals using CP ANN method for regulatory uses. Mol Divers. doi: 10.1007/s11030-009-9190-4.
-
(2009)
Mol Divers
-
-
Fjodorova N, V.1
-
61
-
-
68949156167
-
Additive SMILES-based carcinogenicity models: Probabilistic principles in the search for robust predictions
-
10.3390/ijms10073106 1:CAS:528:DC%2BD1MXosFOmtbc%3D 10.3390/ijms10073106 19742127
-
AA Toropov AP Toropova E Benfenati 2009 Additive SMILES-based carcinogenicity models: probabilistic principles in the search for robust predictions Int J Mol Sci 10 3106 3127 10.3390/ijms10073106 1:CAS:528: DC%2BD1MXosFOmtbc%3D 10.3390/ijms10073106 19742127
-
(2009)
Int J Mol Sci
, vol.10
, pp. 3106-3127
-
-
Toropov, A.A.1
Toropova, A.P.2
Benfenati, E.3
-
62
-
-
67650878964
-
Prediction of chemical carcinogenicity by machine learning approaches
-
10.1080/10629360902724085 1:CAS:528:DC%2BD1MXhtVKqsbnM 10.1080/10629360902724085 19343583
-
NX Tan HB Rao ZR Li XY Li 2009 Prediction of chemical carcinogenicity by machine learning approaches SAR QSAR Environ Res 20 27 75 10.1080/ 10629360902724085 1:CAS:528:DC%2BD1MXhtVKqsbnM 10.1080/10629360902724085 19343583
-
(2009)
SAR QSAR Environ Res
, vol.20
, pp. 27-75
-
-
Tan, N.X.1
Rao, H.B.2
Li, Z.R.3
Li, X.Y.4
-
63
-
-
58149457545
-
Development of quantitative structure-activity relationship (QSAR) models to predict the carcinogenic potency of chemicals I. Alternative toxicity measures as an estimator of carcinogenic potency
-
10.1016/j.taap.2008.09.028 1:CAS:528:DC%2BD1MXksVensQ%3D%3D 10.1016/j.taap.2008.09.028 18977375
-
R Venkatapathy CY Wang RM Bruce C Moudgal 2009 Development of quantitative structure-activity relationship (QSAR) models to predict the carcinogenic potency of chemicals I. Alternative toxicity measures as an estimator of carcinogenic potency Toxicol Appl Pharmacol 234 209 221 10.1016/j.taap.2008.09.028 1:CAS:528:DC%2BD1MXksVensQ%3D%3D 10.1016/j.taap.2008. 09.028 18977375
-
(2009)
Toxicol Appl Pharmacol
, vol.234
, pp. 209-221
-
-
Venkatapathy, R.1
Wang, C.Y.2
Bruce, R.M.3
Moudgal, C.4
-
64
-
-
59349096883
-
Improving prediction of chemical carcinogenicity by considering multiple mechanisms and applying toxicogenomic approaches. 1
-
1:CAS:528:DC%2BD1MXhsFOltL8%3D 10.1016/j.mrrev.2008.10.001 19010444
-
KZ Guyton AD Kyle J Aubrecht VJ Cogliano DA Eastmond M Jackson N Keshava MS Sandy B Sonawane L Zhang MD Waters MT Smith 2009 Improving prediction of chemical carcinogenicity by considering multiple mechanisms and applying toxicogenomic approaches. 1 Mutat Res 681 230 240 1:CAS:528:DC%2BD1MXhsFOltL8%3D 10.1016/j.mrrev.2008.10.001 19010444
-
(2009)
Mutat Res
, vol.681
, pp. 230-240
-
-
Guyton, K.Z.1
Kyle, A.D.2
Aubrecht, J.3
Cogliano, V.J.4
Eastmond, D.A.5
Jackson, M.6
Keshava, N.7
Sandy, M.S.8
Sonawane, B.9
Zhang, L.10
Waters, M.D.11
Smith, M.T.12
-
65
-
-
66149126079
-
Predictive models for carcinogenicity and mutagenicity: Frameworks, state-of-the-art, and perspectives
-
10.1080/10590500902885593 1:CAS:528:DC%2BD1MXlsVeqt78%3D 10.1080/10590500902885593
-
E Benfenati R Benigni DM De Marini C Helma D Kirkland TM Martin P Mazzatorta G Ouédraogo-Arras AM Richard B Schilter WGEJ Schoonen RD Snyder C Yang 2009 Predictive models for carcinogenicity and mutagenicity: Frameworks, state-of-the-art, and perspectives J Environ Sci Health, Part C 27 57 90 10.1080/10590500902885593 1:CAS:528:DC%2BD1MXlsVeqt78%3D 10.1080/10590500902885593
-
(2009)
J Environ Sci Health, Part C
, vol.27
, pp. 57-90
-
-
Benfenati, E.1
Benigni, R.2
De Marini, D.M.3
Helma, C.4
Kirkland, D.5
Martin, T.M.6
Mazzatorta, P.7
Ouédraogo-Arras, G.8
Richard, A.M.9
Schilter, B.10
Wgej, S.11
Snyder, R.D.12
Yang, C.13
|