-
1
-
-
20044383057
-
Structure-activity relationship studies of chemical mutagens and carcinogens: Mechanistic investigations and prediction approaches
-
R. Benigni, Structure-activity relationship studies of chemical mutagens and carcinogens: mechanistic investigations and prediction approaches, Chem. Rev. 105 (2005), pp. 1767-1800.
-
(2005)
Chem. Rev
, vol.105
, pp. 1767-1800
-
-
Benigni, R.1
-
3
-
-
32544435283
-
An analysis of genetic toxicity, reproductive and developmental toxicity, and carcinogenicity data: II. Identification of genotoxicants, reprotoxicants, and carcinogens using in silico methods
-
E.J. Matthews, N.L. Kruhlak, M.C. Cimino, R.D. Benz, and J.F. Contrera, An analysis of genetic toxicity, reproductive and developmental toxicity, and carcinogenicity data: II. Identification of genotoxicants, reprotoxicants, and carcinogens using in silico methods, Regul. Toxicol. Pharm. 44 (2006), pp. 97-110.
-
(2006)
Regul. Toxicol. Pharm
, vol.44
, pp. 97-110
-
-
Matthews, E.J.1
Kruhlak, N.L.2
Cimino, M.C.3
Benz, R.D.4
Contrera, J.F.5
-
4
-
-
0035113097
-
-
C. Helma, R.D. King, S. Kramer, and A. Srinivasan, The predictive toxicology challenge 2000-2001, Bioinformatics 17 (2001), pp. 107-108.
-
(2001)
The predictive toxicology challenge 2000-2001, Bioinformatics
, vol.17
, pp. 107-108
-
-
Helma, C.1
King, R.D.2
Kramer, S.3
Srinivasan, A.4
-
5
-
-
33746699012
-
-
available at
-
NTP, National Toxicology Program, available at http://ntp-apps.niehs.nih.gov/ntp-tox/ index.cfm
-
National Toxicology Program
-
-
-
7
-
-
85195042328
-
-
Istituto Superiore di Sanita, ISSCAN (Istituto Superiore di Sanita, Chemical Carcinogens: Structures and Experimental Data), available at http://www.epa.gov/ncct/dsstox/ sdf-isscan-external.html
-
Istituto Superiore di Sanita, ISSCAN (Istituto Superiore di Sanita, "Chemical Carcinogens: Structures and Experimental Data"), available at http://www.epa.gov/ncct/dsstox/ sdf-isscan-external.html
-
-
-
-
8
-
-
0032565550
-
Structure-based methods for predicting mutagenicity and carcinogenicity: Are we there yet?, Mutat. Res. Fund
-
A.M. Richard, Structure-based methods for predicting mutagenicity and carcinogenicity: are we there yet?, Mutat. Res. Fund. Mol. M. 400 (1998), pp. 493-507.
-
(1998)
Mol. M
, vol.400
, pp. 493-507
-
-
Richard, A.M.1
-
9
-
-
0029153221
-
Development of structure-activity relationship rules for predicting carcinogenic potential of chemicals
-
Y.T. Woo, D.Y. Lai, M.F. Argus, and J.C. Arcos, Development of structure-activity relationship rules for predicting carcinogenic potential of chemicals, Toxicol. Lett. 79 (1995), pp. 219-228.
-
(1995)
Toxicol. Lett
, vol.79
, pp. 219-228
-
-
Woo, Y.T.1
Lai, D.Y.2
Argus, M.F.3
Arcos, J.C.4
-
10
-
-
14844294440
-
A topological substructural approach applied to the computational prediction of rodent carcinogenicity
-
A.M. Helguera, M.A.C. Pérez, M.P. González, R.M. Ruiz, and H.G. Díaz, A topological substructural approach applied to the computational prediction of rodent carcinogenicity, Bioorgan. Med. Chem. 13 (2005), pp. 2477-2488.
-
(2005)
Bioorgan. Med. Chem
, vol.13
, pp. 2477-2488
-
-
Helguera, A.M.1
Pérez, M.A.C.2
González, M.P.3
Ruiz, R.M.4
Díaz, H.G.5
-
11
-
-
0028157137
-
Approaches to SAR in carcinogenesis and mutagenesis. Prediction of carcinogenicuty/mutagenicity using MULTI-CASE
-
G. Klopman and H.S. Rosenkranz, Approaches to SAR in carcinogenesis and mutagenesis. Prediction of carcinogenicuty/mutagenicity using MULTI-CASE, Mutat. Res. 305 (1994), pp. 33-46.
-
(1994)
Mutat. Res
, vol.305
, pp. 33-46
-
-
Klopman, G.1
Rosenkranz, H.S.2
-
12
-
-
0035468216
-
Integration of computational analysis as a sentinel tool in toxicological assessments
-
G.M. Pearl, L.C. Sondra, and S.K. Durham, Integration of computational analysis as a sentinel tool in toxicological assessments, Curr. Top. Med. Chem. 1 (2001), pp. 247-255.
-
(2001)
Curr. Top. Med. Chem
, vol.1
, pp. 247-255
-
-
Pearl, G.M.1
Sondra, L.C.2
Durham, S.K.3
-
13
-
-
24644512743
-
Validity and validation of expert (Q)SAR systems
-
E. Hulzebos, D. Sijm, T. Traas, R. Posthumus, and L. Maslankiewicz, Validity and validation of expert (Q)SAR systems, SAR QSAR Environ. Res. 16 (2005), pp. 385-401.
-
(2005)
SAR QSAR Environ. Res
, vol.16
, pp. 385-401
-
-
Hulzebos, E.1
Sijm, D.2
Traas, T.3
Posthumus, R.4
Maslankiewicz, L.5
-
14
-
-
0242624535
-
Predicting the carcinogenic potential of pharmaceuticals in rodents using molecular structural similarity and E-state indices
-
J.F. Contrera, E.J. Matthews, and R.D. Benz, Predicting the carcinogenic potential of pharmaceuticals in rodents using molecular structural similarity and E-state indices, Regul. Toxicol. Pharm. 38 (2003), pp. 243-259.
-
(2003)
Regul. Toxicol. Pharm
, vol.38
, pp. 243-259
-
-
Contrera, J.F.1
Matthews, E.J.2
Benz, R.D.3
-
15
-
-
0141611162
-
Designing safer drugs: (Q)SAR-based identification of mutagens and carcinogens
-
R. Benigni and R. Zito, Designing safer drugs: (Q)SAR-based identification of mutagens and carcinogens, Curr. Top. Med. Chem. 3 (2003), pp. 1289-1300.
-
(2003)
Curr. Top. Med. Chem
, vol.3
, pp. 1289-1300
-
-
Benigni, R.1
Zito, R.2
-
16
-
-
13844270855
-
Classification of the carcinogenicity of N-nitroso compounds based on support vector machines and linear discriminant analysis
-
F. Luan, R.S. Zhang, C.Y. Zhao, X.J. Yao, M.C. Liu, Z.D. Hu, and B.T. Fan, Classification of the carcinogenicity of N-nitroso compounds based on support vector machines and linear discriminant analysis, Chem. Res. Toxicol. 18 (2005), pp. 198-203.
-
(2005)
Chem. Res. Toxicol
, vol.18
, pp. 198-203
-
-
Luan, F.1
Zhang, R.S.2
Zhao, C.Y.3
Yao, X.J.4
Liu, M.C.5
Hu, Z.D.6
Fan, B.T.7
-
17
-
-
85195046046
-
-
G. Klopman, S.K. Chakravarti, H. Zhu, J.M. Ivanov, and R.D. Saiakhov, ESP: A method to predict toxicity and pharmacological properties of chemicals using multiple MCASE database, J. Chem. Inf. Comput. Sci. 44 (2004), pp. 704-715.
-
G. Klopman, S.K. Chakravarti, H. Zhu, J.M. Ivanov, and R.D. Saiakhov, ESP: A method to predict toxicity and pharmacological properties of chemicals using multiple MCASE database, J. Chem. Inf. Comput. Sci. 44 (2004), pp. 704-715.
-
-
-
-
18
-
-
34250795654
-
Prediction of rodent carcinogenic potential of naturally occurring chemicals in the human diet using high-throughput QSAR predictive modeling
-
L.G. Valerio Jr, K.B. Arvidson, R.F. Chanderbhan, and J.F. Contrera, Prediction of rodent carcinogenic potential of naturally occurring chemicals in the human diet using high-throughput QSAR predictive modeling, Toxicol. Appl. Pharm. 222 (2007), pp. 1-16.
-
(2007)
Toxicol. Appl. Pharm
, vol.222
, pp. 1-16
-
-
Valerio Jr, L.G.1
Arvidson, K.B.2
Chanderbhan, R.F.3
Contrera, J.F.4
-
19
-
-
36148935631
-
Comparison of MC4PC and MDLQSAR rodent carcinogenicity predictions and the enhancement of predictive performance by combining QSAR models
-
J.F. Contrera, N.L. Kruhlak, E.J. Matthews, and R.D. Benz, Comparison of MC4PC and MDLQSAR rodent carcinogenicity predictions and the enhancement of predictive performance by combining QSAR models, Regul. Toxicol. Pharm. 49 (2007), pp. 172-182.
-
(2007)
Regul. Toxicol. Pharm
, vol.49
, pp. 172-182
-
-
Contrera, J.F.1
Kruhlak, N.L.2
Matthews, E.J.3
Benz, R.D.4
-
20
-
-
45749129400
-
Use of cell viability assay data improves the prediction accuracy of conventional quantitative structure-activity relationship models of animal carcinogenicity
-
H. Zhu, I. Rusyn, A. Richard, and A. Tropsha, Use of cell viability assay data improves the prediction accuracy of conventional quantitative structure-activity relationship models of animal carcinogenicity, Environ. Health Perspect. 116 (2008), pp. 506-513.
-
(2008)
Environ. Health Perspect
, vol.116
, pp. 506-513
-
-
Zhu, H.1
Rusyn, I.2
Richard, A.3
Tropsha, A.4
-
21
-
-
0033014352
-
Selecting a representative training set for the classification of demolition waste using remote NIR sensing
-
P.J. de Groot, G.J. Postma, W.J. Melssen, and L.M.C. Buydens, Selecting a representative training set for the classification of demolition waste using remote NIR sensing, Anal. Chim. Acta. 392 (1999), pp. 67-75.
-
(1999)
Anal. Chim. Acta
, vol.392
, pp. 67-75
-
-
de Groot, P.J.1
Postma, G.J.2
Melssen, W.J.3
Buydens, L.M.C.4
-
22
-
-
85195074604
-
-
HyperChem Release 7.0 Beta 1.04, software available at
-
HyperChem Release 7.0 (Beta 1.04), software available at http://www.hyper.com
-
-
-
-
23
-
-
34249847812
-
MODEL - Molecular Descriptor Lab: A web-based server for computing structural and physicochemical descriptors of compounds
-
software available at
-
Z.R. Li, L.Y. Han, Y. Xue, C.W. Yap, H. Li, L. Jiang, and Y.Z. Chen, MODEL - Molecular Descriptor Lab: a web-based server for computing structural and physicochemical descriptors of compounds, Biotechnol. Bioeng. 97 (2007), pp. 389-396; software available at http:// jing.cz3.nus.edu.sg/cgi-bin/ model/model.cgi
-
(2007)
Biotechnol. Bioeng
, vol.97
, pp. 389-396
-
-
Li, Z.R.1
Han, L.Y.2
Xue, Y.3
Yap, C.W.4
Li, H.5
Jiang, L.6
Chen, Y.Z.7
-
25
-
-
33244481088
-
Three-dimensional QSAR using the k-nearest neighbor method and its interpretation
-
S. Ajmani, K. Jadhav, and A.K. Sudhir, Three-dimensional QSAR using the k-nearest neighbor method and its interpretation, J. Chem. Inf. Model. 46 (2006), pp. 24-31.
-
(2006)
J. Chem. Inf. Model
, vol.46
, pp. 24-31
-
-
Ajmani, S.1
Jadhav, K.2
Sudhir, A.K.3
-
26
-
-
4043091303
-
Prediction of P-glycoprotein substrates by a support vector machine approach
-
Y. Xue, C.W. Yap, L.Z. Sun, Z.W. Cao, J.F. Wang, and Y.Z. Chen, Prediction of P-glycoprotein substrates by a support vector machine approach, J. Chem. Inf. Comput. Sci. 44 (2004), pp. 1497-1505.
-
(2004)
J. Chem. Inf. Comput. Sci
, vol.44
, pp. 1497-1505
-
-
Xue, Y.1
Yap, C.W.2
Sun, L.Z.3
Cao, Z.W.4
Wang, J.F.5
Chen, Y.Z.6
-
27
-
-
27144489164
-
A tutorial on support vector machines for pattern recognition
-
C.J.C. Burges, A tutorial on support vector machines for pattern recognition, Data Min. Knowl. Disc. 2 (1998), pp. 127-167.
-
(1998)
Data Min. Knowl. Disc
, vol.2
, pp. 127-167
-
-
Burges, C.J.C.1
-
28
-
-
0027692921
-
Traditional topological indices vs electronic, geometrical and combined molecular descriptors in QSAR/QSPR research
-
A.R. Katritzky and E.V. Gordeeva, Traditional topological indices vs electronic, geometrical and combined molecular descriptors in QSAR/QSPR research, J. Chem. Inf. Comput. Sci. 33 (1993), pp. 835-857.
-
(1993)
J. Chem. Inf. Comput. Sci
, vol.33
, pp. 835-857
-
-
Katritzky, A.R.1
Gordeeva, E.V.2
-
29
-
-
0034740222
-
Drug design by machine learning: Support vector machines for pharmaceutical data analysis
-
R. Burbidge, M. Trotter, B. Buxton, and S. Holden, Drug design by machine learning: support vector machines for pharmaceutical data analysis, Comput. Chem. 26 (2001), pp. 5-14.
-
(2001)
Comput. Chem
, vol.26
, pp. 5-14
-
-
Burbidge, R.1
Trotter, M.2
Buxton, B.3
Holden, S.4
-
31
-
-
33748702895
-
Classification of a diverse set of tetrahymena pyriformis toxicity chemical compounds from molecular descriptors by statistical learning methods
-
Y. Xue, H. Li, C.Y. Ung, C.W. Yap, and Y.Z. Chen, Classification of a diverse set of tetrahymena pyriformis toxicity chemical compounds from molecular descriptors by statistical learning methods, Chem. Res. Toxicol. 19 (2006), pp. 1030-1039.
-
(2006)
Chem. Res. Toxicol
, vol.19
, pp. 1030-1039
-
-
Xue, Y.1
Li, H.2
Ung, C.Y.3
Yap, C.W.4
Chen, Y.Z.5
-
32
-
-
3042580671
-
Impact of descriptor vector scaling on the classification of drugs and nondrugs with artificial neural networks
-
A. Givehchi and G. Schneider, Impact of descriptor vector scaling on the classification of drugs and nondrugs with artificial neural networks, J. Mol. Model. 10 (2004), pp. 204-211.
-
(2004)
J. Mol. Model
, vol.10
, pp. 204-211
-
-
Givehchi, A.1
Schneider, G.2
-
33
-
-
21144435586
-
Prediction of genotoxicity of chemical compounds by statistical learning methods
-
H. Li, C.Y. Ung, C.W. Yap, Y. Xue, Z.R. Li, Z.W. Cao, and Y.Z. Chen, Prediction of genotoxicity of chemical compounds by statistical learning methods, Chem. Res. Toxicol. 18 (2005), pp. 1071-1080.
-
(2005)
Chem. Res. Toxicol
, vol.18
, pp. 1071-1080
-
-
Li, H.1
Ung, C.Y.2
Yap, C.W.3
Xue, Y.4
Li, Z.R.5
Cao, Z.W.6
Chen, Y.Z.7
-
35
-
-
0011916690
-
The electronic properties of carcinogens and their role in SAR studied of non-congeneric chemicals
-
R. Benigin, C. Andreoli, M. Cotta-Ramusino, F. Giorgi, and G. Gallo, The electronic properties of carcinogens and their role in SAR studied of non-congeneric chemicals, Toxicol. Model. 1 (1995), pp. 157-167.
-
(1995)
Toxicol. Model
, vol.1
, pp. 157-167
-
-
Benigin, R.1
Andreoli, C.2
Cotta-Ramusino, M.3
Giorgi, F.4
Gallo, G.5
-
36
-
-
0037480748
-
Putting the predictive toxicology challenge into perspective: Reflections on the results
-
R. Benigni and A. Giuliani, Putting the predictive toxicology challenge into perspective: reflections on the results, Bioinformatics 19 (2003), pp. 1194-1200.
-
(2003)
Bioinformatics
, vol.19
, pp. 1194-1200
-
-
Benigni, R.1
Giuliani, A.2
-
37
-
-
0036589313
-
Predictive QSAR modeling based on diversity sampling of experimental datasets for the training and test set selection
-
G. Alexander and A. Tropsha, Predictive QSAR modeling based on diversity sampling of experimental datasets for the training and test set selection, J. Comput.-Aid. Mol. Des. 16 (2002), pp. 357-369.
-
(2002)
J. Comput.-Aid. Mol. Des
, vol.16
, pp. 357-369
-
-
Alexander, G.1
Tropsha, A.2
-
38
-
-
27744520085
-
An approach to determining applicability domains for QSAR group contribution models: An analysis of SRC KOWWIN
-
N. Nikolova-Jeliazkova and J. Jaworska, An approach to determining applicability domains for QSAR group contribution models: an analysis of SRC KOWWIN, Altern. Lab. Anim. 33 (2005), pp. 461-470.
-
(2005)
Altern. Lab. Anim
, vol.33
, pp. 461-470
-
-
Nikolova-Jeliazkova, N.1
Jaworska, J.2
-
40
-
-
27744590591
-
QSAR applicability domain estimation by projection of the training set in descriptor space: A review
-
J. Jaworska, N. Nikolova-Jeliazkova, and T. Aldenberg, QSAR applicability domain estimation by projection of the training set in descriptor space: A review, ATLA 33 (2005), pp. 445-459.
-
(2005)
ATLA
, vol.33
, pp. 445-459
-
-
Jaworska, J.1
Nikolova-Jeliazkova, N.2
Aldenberg, T.3
-
41
-
-
0036161011
-
Choosing multiple parameters for support vector machines
-
O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee, Choosing multiple parameters for support vector machines, Machine Learn. 46 (2002), pp. 131-159.
-
(2002)
Machine Learn
, vol.46
, pp. 131-159
-
-
Chapelle, O.1
Vapnik, V.2
Bousquet, O.3
Mukherjee, S.4
|