메뉴 건너뛰기




Volumn 20, Issue 1-2, 2009, Pages 27-75

Prediction of chemical carcinogenicity by machine learning approaches

Author keywords

Carcinogenicity; Feature selection; Monte Carlo simulated annealing; Support vector machine

Indexed keywords

CLASSIFICATION (OF INFORMATION); FEATURE SELECTION; FORECASTING; MONTE CARLO METHODS; NEURAL NETWORKS; SIMULATED ANNEALING;

EID: 67650878964     PISSN: 1062936X     EISSN: 1029046X     Source Type: Journal    
DOI: 10.1080/10629360902724085     Document Type: Article
Times cited : (25)

References (41)
  • 1
    • 20044383057 scopus 로고    scopus 로고
    • Structure-activity relationship studies of chemical mutagens and carcinogens: Mechanistic investigations and prediction approaches
    • R. Benigni, Structure-activity relationship studies of chemical mutagens and carcinogens: mechanistic investigations and prediction approaches, Chem. Rev. 105 (2005), pp. 1767-1800.
    • (2005) Chem. Rev , vol.105 , pp. 1767-1800
    • Benigni, R.1
  • 3
    • 32544435283 scopus 로고    scopus 로고
    • An analysis of genetic toxicity, reproductive and developmental toxicity, and carcinogenicity data: II. Identification of genotoxicants, reprotoxicants, and carcinogens using in silico methods
    • E.J. Matthews, N.L. Kruhlak, M.C. Cimino, R.D. Benz, and J.F. Contrera, An analysis of genetic toxicity, reproductive and developmental toxicity, and carcinogenicity data: II. Identification of genotoxicants, reprotoxicants, and carcinogens using in silico methods, Regul. Toxicol. Pharm. 44 (2006), pp. 97-110.
    • (2006) Regul. Toxicol. Pharm , vol.44 , pp. 97-110
    • Matthews, E.J.1    Kruhlak, N.L.2    Cimino, M.C.3    Benz, R.D.4    Contrera, J.F.5
  • 5
    • 33746699012 scopus 로고    scopus 로고
    • available at
    • NTP, National Toxicology Program, available at http://ntp-apps.niehs.nih.gov/ntp-tox/ index.cfm
    • National Toxicology Program
  • 7
    • 85195042328 scopus 로고    scopus 로고
    • Istituto Superiore di Sanita, ISSCAN (Istituto Superiore di Sanita, Chemical Carcinogens: Structures and Experimental Data), available at http://www.epa.gov/ncct/dsstox/ sdf-isscan-external.html
    • Istituto Superiore di Sanita, ISSCAN (Istituto Superiore di Sanita, "Chemical Carcinogens: Structures and Experimental Data"), available at http://www.epa.gov/ncct/dsstox/ sdf-isscan-external.html
  • 8
    • 0032565550 scopus 로고    scopus 로고
    • Structure-based methods for predicting mutagenicity and carcinogenicity: Are we there yet?, Mutat. Res. Fund
    • A.M. Richard, Structure-based methods for predicting mutagenicity and carcinogenicity: are we there yet?, Mutat. Res. Fund. Mol. M. 400 (1998), pp. 493-507.
    • (1998) Mol. M , vol.400 , pp. 493-507
    • Richard, A.M.1
  • 9
    • 0029153221 scopus 로고
    • Development of structure-activity relationship rules for predicting carcinogenic potential of chemicals
    • Y.T. Woo, D.Y. Lai, M.F. Argus, and J.C. Arcos, Development of structure-activity relationship rules for predicting carcinogenic potential of chemicals, Toxicol. Lett. 79 (1995), pp. 219-228.
    • (1995) Toxicol. Lett , vol.79 , pp. 219-228
    • Woo, Y.T.1    Lai, D.Y.2    Argus, M.F.3    Arcos, J.C.4
  • 10
    • 14844294440 scopus 로고    scopus 로고
    • A topological substructural approach applied to the computational prediction of rodent carcinogenicity
    • A.M. Helguera, M.A.C. Pérez, M.P. González, R.M. Ruiz, and H.G. Díaz, A topological substructural approach applied to the computational prediction of rodent carcinogenicity, Bioorgan. Med. Chem. 13 (2005), pp. 2477-2488.
    • (2005) Bioorgan. Med. Chem , vol.13 , pp. 2477-2488
    • Helguera, A.M.1    Pérez, M.A.C.2    González, M.P.3    Ruiz, R.M.4    Díaz, H.G.5
  • 11
    • 0028157137 scopus 로고
    • Approaches to SAR in carcinogenesis and mutagenesis. Prediction of carcinogenicuty/mutagenicity using MULTI-CASE
    • G. Klopman and H.S. Rosenkranz, Approaches to SAR in carcinogenesis and mutagenesis. Prediction of carcinogenicuty/mutagenicity using MULTI-CASE, Mutat. Res. 305 (1994), pp. 33-46.
    • (1994) Mutat. Res , vol.305 , pp. 33-46
    • Klopman, G.1    Rosenkranz, H.S.2
  • 12
    • 0035468216 scopus 로고    scopus 로고
    • Integration of computational analysis as a sentinel tool in toxicological assessments
    • G.M. Pearl, L.C. Sondra, and S.K. Durham, Integration of computational analysis as a sentinel tool in toxicological assessments, Curr. Top. Med. Chem. 1 (2001), pp. 247-255.
    • (2001) Curr. Top. Med. Chem , vol.1 , pp. 247-255
    • Pearl, G.M.1    Sondra, L.C.2    Durham, S.K.3
  • 14
    • 0242624535 scopus 로고    scopus 로고
    • Predicting the carcinogenic potential of pharmaceuticals in rodents using molecular structural similarity and E-state indices
    • J.F. Contrera, E.J. Matthews, and R.D. Benz, Predicting the carcinogenic potential of pharmaceuticals in rodents using molecular structural similarity and E-state indices, Regul. Toxicol. Pharm. 38 (2003), pp. 243-259.
    • (2003) Regul. Toxicol. Pharm , vol.38 , pp. 243-259
    • Contrera, J.F.1    Matthews, E.J.2    Benz, R.D.3
  • 15
    • 0141611162 scopus 로고    scopus 로고
    • Designing safer drugs: (Q)SAR-based identification of mutagens and carcinogens
    • R. Benigni and R. Zito, Designing safer drugs: (Q)SAR-based identification of mutagens and carcinogens, Curr. Top. Med. Chem. 3 (2003), pp. 1289-1300.
    • (2003) Curr. Top. Med. Chem , vol.3 , pp. 1289-1300
    • Benigni, R.1    Zito, R.2
  • 16
    • 13844270855 scopus 로고    scopus 로고
    • Classification of the carcinogenicity of N-nitroso compounds based on support vector machines and linear discriminant analysis
    • F. Luan, R.S. Zhang, C.Y. Zhao, X.J. Yao, M.C. Liu, Z.D. Hu, and B.T. Fan, Classification of the carcinogenicity of N-nitroso compounds based on support vector machines and linear discriminant analysis, Chem. Res. Toxicol. 18 (2005), pp. 198-203.
    • (2005) Chem. Res. Toxicol , vol.18 , pp. 198-203
    • Luan, F.1    Zhang, R.S.2    Zhao, C.Y.3    Yao, X.J.4    Liu, M.C.5    Hu, Z.D.6    Fan, B.T.7
  • 17
    • 85195046046 scopus 로고    scopus 로고
    • G. Klopman, S.K. Chakravarti, H. Zhu, J.M. Ivanov, and R.D. Saiakhov, ESP: A method to predict toxicity and pharmacological properties of chemicals using multiple MCASE database, J. Chem. Inf. Comput. Sci. 44 (2004), pp. 704-715.
    • G. Klopman, S.K. Chakravarti, H. Zhu, J.M. Ivanov, and R.D. Saiakhov, ESP: A method to predict toxicity and pharmacological properties of chemicals using multiple MCASE database, J. Chem. Inf. Comput. Sci. 44 (2004), pp. 704-715.
  • 18
    • 34250795654 scopus 로고    scopus 로고
    • Prediction of rodent carcinogenic potential of naturally occurring chemicals in the human diet using high-throughput QSAR predictive modeling
    • L.G. Valerio Jr, K.B. Arvidson, R.F. Chanderbhan, and J.F. Contrera, Prediction of rodent carcinogenic potential of naturally occurring chemicals in the human diet using high-throughput QSAR predictive modeling, Toxicol. Appl. Pharm. 222 (2007), pp. 1-16.
    • (2007) Toxicol. Appl. Pharm , vol.222 , pp. 1-16
    • Valerio Jr, L.G.1    Arvidson, K.B.2    Chanderbhan, R.F.3    Contrera, J.F.4
  • 19
    • 36148935631 scopus 로고    scopus 로고
    • Comparison of MC4PC and MDLQSAR rodent carcinogenicity predictions and the enhancement of predictive performance by combining QSAR models
    • J.F. Contrera, N.L. Kruhlak, E.J. Matthews, and R.D. Benz, Comparison of MC4PC and MDLQSAR rodent carcinogenicity predictions and the enhancement of predictive performance by combining QSAR models, Regul. Toxicol. Pharm. 49 (2007), pp. 172-182.
    • (2007) Regul. Toxicol. Pharm , vol.49 , pp. 172-182
    • Contrera, J.F.1    Kruhlak, N.L.2    Matthews, E.J.3    Benz, R.D.4
  • 20
    • 45749129400 scopus 로고    scopus 로고
    • Use of cell viability assay data improves the prediction accuracy of conventional quantitative structure-activity relationship models of animal carcinogenicity
    • H. Zhu, I. Rusyn, A. Richard, and A. Tropsha, Use of cell viability assay data improves the prediction accuracy of conventional quantitative structure-activity relationship models of animal carcinogenicity, Environ. Health Perspect. 116 (2008), pp. 506-513.
    • (2008) Environ. Health Perspect , vol.116 , pp. 506-513
    • Zhu, H.1    Rusyn, I.2    Richard, A.3    Tropsha, A.4
  • 21
    • 0033014352 scopus 로고    scopus 로고
    • Selecting a representative training set for the classification of demolition waste using remote NIR sensing
    • P.J. de Groot, G.J. Postma, W.J. Melssen, and L.M.C. Buydens, Selecting a representative training set for the classification of demolition waste using remote NIR sensing, Anal. Chim. Acta. 392 (1999), pp. 67-75.
    • (1999) Anal. Chim. Acta , vol.392 , pp. 67-75
    • de Groot, P.J.1    Postma, G.J.2    Melssen, W.J.3    Buydens, L.M.C.4
  • 22
    • 85195074604 scopus 로고    scopus 로고
    • HyperChem Release 7.0 Beta 1.04, software available at
    • HyperChem Release 7.0 (Beta 1.04), software available at http://www.hyper.com
  • 23
    • 34249847812 scopus 로고    scopus 로고
    • MODEL - Molecular Descriptor Lab: A web-based server for computing structural and physicochemical descriptors of compounds
    • software available at
    • Z.R. Li, L.Y. Han, Y. Xue, C.W. Yap, H. Li, L. Jiang, and Y.Z. Chen, MODEL - Molecular Descriptor Lab: a web-based server for computing structural and physicochemical descriptors of compounds, Biotechnol. Bioeng. 97 (2007), pp. 389-396; software available at http:// jing.cz3.nus.edu.sg/cgi-bin/ model/model.cgi
    • (2007) Biotechnol. Bioeng , vol.97 , pp. 389-396
    • Li, Z.R.1    Han, L.Y.2    Xue, Y.3    Yap, C.W.4    Li, H.5    Jiang, L.6    Chen, Y.Z.7
  • 25
    • 33244481088 scopus 로고    scopus 로고
    • Three-dimensional QSAR using the k-nearest neighbor method and its interpretation
    • S. Ajmani, K. Jadhav, and A.K. Sudhir, Three-dimensional QSAR using the k-nearest neighbor method and its interpretation, J. Chem. Inf. Model. 46 (2006), pp. 24-31.
    • (2006) J. Chem. Inf. Model , vol.46 , pp. 24-31
    • Ajmani, S.1    Jadhav, K.2    Sudhir, A.K.3
  • 26
    • 4043091303 scopus 로고    scopus 로고
    • Prediction of P-glycoprotein substrates by a support vector machine approach
    • Y. Xue, C.W. Yap, L.Z. Sun, Z.W. Cao, J.F. Wang, and Y.Z. Chen, Prediction of P-glycoprotein substrates by a support vector machine approach, J. Chem. Inf. Comput. Sci. 44 (2004), pp. 1497-1505.
    • (2004) J. Chem. Inf. Comput. Sci , vol.44 , pp. 1497-1505
    • Xue, Y.1    Yap, C.W.2    Sun, L.Z.3    Cao, Z.W.4    Wang, J.F.5    Chen, Y.Z.6
  • 27
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • C.J.C. Burges, A tutorial on support vector machines for pattern recognition, Data Min. Knowl. Disc. 2 (1998), pp. 127-167.
    • (1998) Data Min. Knowl. Disc , vol.2 , pp. 127-167
    • Burges, C.J.C.1
  • 28
    • 0027692921 scopus 로고
    • Traditional topological indices vs electronic, geometrical and combined molecular descriptors in QSAR/QSPR research
    • A.R. Katritzky and E.V. Gordeeva, Traditional topological indices vs electronic, geometrical and combined molecular descriptors in QSAR/QSPR research, J. Chem. Inf. Comput. Sci. 33 (1993), pp. 835-857.
    • (1993) J. Chem. Inf. Comput. Sci , vol.33 , pp. 835-857
    • Katritzky, A.R.1    Gordeeva, E.V.2
  • 29
    • 0034740222 scopus 로고    scopus 로고
    • Drug design by machine learning: Support vector machines for pharmaceutical data analysis
    • R. Burbidge, M. Trotter, B. Buxton, and S. Holden, Drug design by machine learning: support vector machines for pharmaceutical data analysis, Comput. Chem. 26 (2001), pp. 5-14.
    • (2001) Comput. Chem , vol.26 , pp. 5-14
    • Burbidge, R.1    Trotter, M.2    Buxton, B.3    Holden, S.4
  • 31
    • 33748702895 scopus 로고    scopus 로고
    • Classification of a diverse set of tetrahymena pyriformis toxicity chemical compounds from molecular descriptors by statistical learning methods
    • Y. Xue, H. Li, C.Y. Ung, C.W. Yap, and Y.Z. Chen, Classification of a diverse set of tetrahymena pyriformis toxicity chemical compounds from molecular descriptors by statistical learning methods, Chem. Res. Toxicol. 19 (2006), pp. 1030-1039.
    • (2006) Chem. Res. Toxicol , vol.19 , pp. 1030-1039
    • Xue, Y.1    Li, H.2    Ung, C.Y.3    Yap, C.W.4    Chen, Y.Z.5
  • 32
    • 3042580671 scopus 로고    scopus 로고
    • Impact of descriptor vector scaling on the classification of drugs and nondrugs with artificial neural networks
    • A. Givehchi and G. Schneider, Impact of descriptor vector scaling on the classification of drugs and nondrugs with artificial neural networks, J. Mol. Model. 10 (2004), pp. 204-211.
    • (2004) J. Mol. Model , vol.10 , pp. 204-211
    • Givehchi, A.1    Schneider, G.2
  • 33
    • 21144435586 scopus 로고    scopus 로고
    • Prediction of genotoxicity of chemical compounds by statistical learning methods
    • H. Li, C.Y. Ung, C.W. Yap, Y. Xue, Z.R. Li, Z.W. Cao, and Y.Z. Chen, Prediction of genotoxicity of chemical compounds by statistical learning methods, Chem. Res. Toxicol. 18 (2005), pp. 1071-1080.
    • (2005) Chem. Res. Toxicol , vol.18 , pp. 1071-1080
    • Li, H.1    Ung, C.Y.2    Yap, C.W.3    Xue, Y.4    Li, Z.R.5    Cao, Z.W.6    Chen, Y.Z.7
  • 35
    • 0011916690 scopus 로고
    • The electronic properties of carcinogens and their role in SAR studied of non-congeneric chemicals
    • R. Benigin, C. Andreoli, M. Cotta-Ramusino, F. Giorgi, and G. Gallo, The electronic properties of carcinogens and their role in SAR studied of non-congeneric chemicals, Toxicol. Model. 1 (1995), pp. 157-167.
    • (1995) Toxicol. Model , vol.1 , pp. 157-167
    • Benigin, R.1    Andreoli, C.2    Cotta-Ramusino, M.3    Giorgi, F.4    Gallo, G.5
  • 36
    • 0037480748 scopus 로고    scopus 로고
    • Putting the predictive toxicology challenge into perspective: Reflections on the results
    • R. Benigni and A. Giuliani, Putting the predictive toxicology challenge into perspective: reflections on the results, Bioinformatics 19 (2003), pp. 1194-1200.
    • (2003) Bioinformatics , vol.19 , pp. 1194-1200
    • Benigni, R.1    Giuliani, A.2
  • 37
    • 0036589313 scopus 로고    scopus 로고
    • Predictive QSAR modeling based on diversity sampling of experimental datasets for the training and test set selection
    • G. Alexander and A. Tropsha, Predictive QSAR modeling based on diversity sampling of experimental datasets for the training and test set selection, J. Comput.-Aid. Mol. Des. 16 (2002), pp. 357-369.
    • (2002) J. Comput.-Aid. Mol. Des , vol.16 , pp. 357-369
    • Alexander, G.1    Tropsha, A.2
  • 38
    • 27744520085 scopus 로고    scopus 로고
    • An approach to determining applicability domains for QSAR group contribution models: An analysis of SRC KOWWIN
    • N. Nikolova-Jeliazkova and J. Jaworska, An approach to determining applicability domains for QSAR group contribution models: an analysis of SRC KOWWIN, Altern. Lab. Anim. 33 (2005), pp. 461-470.
    • (2005) Altern. Lab. Anim , vol.33 , pp. 461-470
    • Nikolova-Jeliazkova, N.1    Jaworska, J.2
  • 40
    • 27744590591 scopus 로고    scopus 로고
    • QSAR applicability domain estimation by projection of the training set in descriptor space: A review
    • J. Jaworska, N. Nikolova-Jeliazkova, and T. Aldenberg, QSAR applicability domain estimation by projection of the training set in descriptor space: A review, ATLA 33 (2005), pp. 445-459.
    • (2005) ATLA , vol.33 , pp. 445-459
    • Jaworska, J.1    Nikolova-Jeliazkova, N.2    Aldenberg, T.3
  • 41
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee, Choosing multiple parameters for support vector machines, Machine Learn. 46 (2002), pp. 131-159.
    • (2002) Machine Learn , vol.46 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.