메뉴 건너뛰기




Volumn 1, Issue 4, 2008, Pages 334-346

Feature selection for the imbalanced QSAR problems by using easyensemble

Author keywords

easyensemble; feature selection; imbalanced problem; QSAR; quantitative structure activity relationship

Indexed keywords

ALGORITHM; ARTICLE; BIOLOGICAL MODEL; DRUG DESIGN; HUMAN; LABORATORY DIAGNOSIS; QUANTITATIVE STRUCTURE ACTIVITY RELATION; RISK ASSESSMENT; SENSITIVITY AND SPECIFICITY; TREATMENT OUTCOME;

EID: 71249126927     PISSN: 17560756     EISSN: 17560764     Source Type: Journal    
DOI: 10.1504/IJCBDD.2008.022206     Document Type: Article
Times cited : (4)

References (30)
  • 3
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: bagging, boosting, and variants
    • Bauer, E. and Kohavi, R. (1999) ‘An empirical comparison of voting classification algorithms: bagging, boosting, and variants’, Machine learning, Vol. 36, Nos. 1–2, pp.105–139.
    • (1999) Machine learning , vol.36 , Issue.1-2 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 4
    • 33845772315 scopus 로고    scopus 로고
    • Substructure-based support vector machine classifiers for prediction of adverse effects in diverse classes of drugs
    • Bhavani, S., Nagargadde, A., Thawani, A., Sridhar, V. and Chandra, N. (2006) ‘Substructure-based support vector machine classifiers for prediction of adverse effects in diverse classes of drugs’, Journal of Chemical Information and Modeling, Vol. 46, No. 6, pp.2478–2486.
    • (2006) Journal of Chemical Information and Modeling , vol.46 , Issue.6 , pp. 2478-2486
    • Bhavani, S.1    Nagargadde, A.2    Thawani, A.3    Sridhar, V.4    Chandra, N.5
  • 5
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L. (1996) ‘Bagging predictors’, Machine-learning, Vol. 24, No. 2, pp.123–140.
    • (1996) Machine-learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 7
    • 0031361611 scopus 로고    scopus 로고
    • Machine-learning research: four current directions
    • Dietterich, T. (1998) ‘Machine-learning research: four current directions’, The AI Magazine, Vol. 18, No. 4, pp.97–136.
    • (1998) The AI Magazine , vol.18 , Issue.4 , pp. 97-136
    • Dietterich, T.1
  • 8
    • 34250857528 scopus 로고    scopus 로고
    • Ensemble feature selection: consistent descriptor subsets for multiple QSAR models
    • Dutta, D., Guha, R., Wild, D. and Chen, T. (2007) ‘Ensemble feature selection: consistent descriptor subsets for multiple QSAR models’, Journal of Chemical Information and Modeling, Vol. 47, No. 3, pp.989–997.
    • (2007) Journal of Chemical Information and Modeling , vol.47 , Issue.3 , pp. 989-997
    • Dutta, D.1    Guha, R.2    Wild, D.3    Chen, T.4
  • 10
    • 10044227497 scopus 로고    scopus 로고
    • Development of linear, ensemble, and nonlinear models for the prediction and interpretation of the biological activity of a set of PDGFR inhibitors
    • Guha, R. and Jurs, P.C. (2004) ‘Development of linear, ensemble, and nonlinear models for the prediction and interpretation of the biological activity of a set of PDGFR inhibitors’, Journal of Chemical Information and Computer Sciences, Vol. 44, pp.2179–2189.
    • (2004) Journal of Chemical Information and Computer Sciences , vol.44 , pp. 2179-2189
    • Guha, R.1    Jurs, P.C.2
  • 11
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon, I. and Elisseeff, A. (2003) ‘An introduction to variable and feature selection’, Journal of Machine Learning Research, Vol. 3, pp.1157–1182.
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 12
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon, I. and Weston, J. (2002) ‘Gene selection for cancer classification using support vector machines’, Machine Learning, Vol. 46, pp.389–422.
    • (2002) Machine Learning , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2
  • 14
    • 37249042636 scopus 로고    scopus 로고
    • ADME evaluation in drug discovery. 8. the prediction of human intestinal absorption by a support vector machine
    • Hou, T., Wang, J. and Li, Y. (2007) ‘ADME evaluation in drug discovery. 8. the prediction of human intestinal absorption by a support vector machine’, Journal of Chemical Information and Modeling, Vol. 47, pp.2408–2415.
    • (2007) Journal of Chemical Information and Modeling , vol.47 , pp. 2408-2415
    • Hou, T.1    Wang, J.2    Li, Y.3
  • 17
    • 10044255601 scopus 로고    scopus 로고
    • Semiempirical quantum chemical method and artificial neural networks applied for max computation of some azo dyes
    • Li, G-Z., Yang, J., Song, H-F., Yang, S-S., Lu, W-C. and Chen, N-Y. (2004b) ‘Semiempirical quantum chemical method and artificial neural networks applied for max computation of some azo dyes’, Journal of Chemical Information and Computer Science, Vol. 44, No. 6, pp.2047–2050.
    • (2004) Journal of Chemical Information and Computer Science , vol.44 , Issue.6 , pp. 2047-2050
    • Li, G.-Z.1    Yang, J.2    Song, H.-F.3    Yang, S.-S.4    Lu, W.-C.5    Chen, N.-Y.6
  • 19
    • 47249093354 scopus 로고    scopus 로고
    • Asymmetric bagging and feature selection for activities prediction of drug molecules
    • Li, G-Z., Meng, H-H., Lu, W-C., Yang, J.Y. and Yang, M-Q. (2008a) ‘Asymmetric bagging and feature selection for activities prediction of drug molecules’, BMC Bioinformatics, Vol. 9, Suppl. 6, p.S7.
    • (2008) BMC Bioinformatics , vol.9 , pp. S7
    • Li, G.-Z.1    Meng, H.-H.2    Lu, W.-C.3    Yang, J.Y.4    Yang, M.-Q.5
  • 23
    • 0025448521 scopus 로고
    • The strength of weak learn ability
    • Schapire, R. (1990) ‘The strength of weak learn ability’, Machine Learning, Vol. 5, No. 2, pp.197–227.
    • (1990) Machine Learning , vol.5 , Issue.2 , pp. 197-227
    • Schapire, R.1
  • 26
    • 0032781888 scopus 로고    scopus 로고
    • Comparative study of class data analysis with PCA-LDA, SIMCA, PLS, ANNs, and k-NN
    • Tominaga, Y. (1999) ‘Comparative study of class data analysis with PCA-LDA, SIMCA, PLS, ANNs, and k-NN’, Chemometrics and Intelligent Laboratory Systems, Vol. 49, No. 1, pp.105–115.
    • (1999) Chemometrics and Intelligent Laboratory Systems , vol.49 , Issue.1 , pp. 105-115
    • Tominaga, Y.1
  • 27
    • 20844458491 scopus 로고    scopus 로고
    • Mining with rarity-problems and solutions: a unifying framework
    • Weiss, G.M. (2004) ‘Mining with rarity-problems and solutions: a unifying framework’, SIGKDD Explorations, Vol. 6, No. 1, pp.7–19.
    • (2004) SIGKDD Explorations , vol.6 , Issue.1 , pp. 7-19
    • Weiss, G.M.1
  • 28
    • 5444272497 scopus 로고    scopus 로고
    • Effect of molecular descriptor feature selection in support vector machine classification of pharmacokinetic and toxicological properties of chemical agents
    • Xue, Y., Li, Z.R., Yap, C.W., Sun, L.Z., Chen, X. and Chen, Y.Z. (2004) ‘Effect of molecular descriptor feature selection in support vector machine classification of pharmacokinetic and toxicological properties of chemical agents’, Journal of Chemical Information and Computer Science, Vol. 44, No. 5, pp.1630–1638.
    • (2004) Journal of Chemical Information and Computer Science , vol.44 , Issue.5 , pp. 1630-1638
    • Xue, Y.1    Li, Z.R.2    Yap, C.W.3    Sun, L.Z.4    Chen, X.5    Chen, Y.Z.6
  • 29
    • 84947881847 scopus 로고    scopus 로고
    • Support vector regression based QSAR of anti-haemophilus influenzae activity of orally administered cephalosporins
    • this issue
    • Yang, Q., Lu, W., Liu, X. and Gu, T. (2008) ‘Support vector regression based QSAR of anti-haemophilus influenzae activity of orally administered cephalosporins’, International Journal of Computational Biology and Drug Design, Vol. 1, No. 4, this issue.
    • (2008) International Journal of Computational Biology and Drug Design , vol.1 , Issue.4
    • Yang, Q.1    Lu, W.2    Liu, X.3    Gu, T.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.