-
1
-
-
0035906861
-
Phosphorylation of the cohesin subunit Scc1 by Polo/Cdc5 kinase regulates sister chromatid separation in yeast
-
doi:10.1016/S0092-8674(01)00362-2
-
Alexandru, G., F. Uhlmann, K. Mechtler, M.A. Poupart, and K. Nasmyth. 2001. Phosphorylation of the cohesin subunit Scc1 by Polo/Cdc5 kinase regulates sister chromatid separation in yeast. Cell. 105:459-472. doi:10.1016/S0092- 8674(01)00362-2
-
(2001)
Cell
, vol.105
, pp. 459-472
-
-
Alexandru, G.1
Uhlmann, F.2
Mechtler, K.3
Poupart, M.A.4
Nasmyth, K.5
-
2
-
-
3242760516
-
Phosphorylation by cyclin B-Cdk underlies release of mitotic exit activator Cdc14 from the nucleolus
-
doi:10.1126/science.1099402
-
Azzam, R., S.L. Chen, W. Shou, A.S. Mah, G. Alexandru, K. Nasmyth, R.S. Annan, S.A. Carr, and R.J. Deshaies. 2004. Phosphorylation by cyclin B-Cdk underlies release of mitotic exit activator Cdc14 from the nucleolus. Science. 305:516-519. doi:10.1126/science.1099402
-
(2004)
Science
, vol.305
, pp. 516-519
-
-
Azzam, R.1
Chen, S.L.2
Shou, W.3
Mah, A.S.4
Alexandru, G.5
Nasmyth, K.6
Annan, R.S.7
Carr, S.A.8
Deshaies, R.J.9
-
3
-
-
1642499365
-
The ctf13-30/CTF13 genomic haploinsufficiency modifier screen identifies the yeast chromatin remodeling complex RSC, which is required for the establishment of sister chromatid cohesion
-
doi:10.1128/MCB.24.3.1232-1244.2003
-
Baetz, K.K., N.J. Krogan, A. Emili, J. Greenblatt, and P. Hieter. 2004. The ctf13-30/CTF13 genomic haploinsufficiency modifier screen identifies the yeast chromatin remodeling complex RSC, which is required for the establishment of sister chromatid cohesion. Mol. Cell. Biol. 24:1232-1244. doi:10.1128/MCB.24.3.1232-1244.2003
-
(2004)
Mol. Cell. Biol.
, vol.24
, pp. 1232-1244
-
-
Baetz, K.K.1
Krogan, N.J.2
Emili, A.3
Greenblatt, J.4
Hieter, P.5
-
4
-
-
0034214405
-
Complex formation between Mad1p, Bub1p and Bub3p is crucial for spindle checkpoint function
-
doi:10.1016/S0960-9822(00)00515-7
-
Brady, D.M., and K.G. Hardwick. 2000. Complex formation between Mad1p, Bub1p and Bub3p is crucial for spindle checkpoint function. Curr. Biol. 10:675-678. doi:10.1016/S0960-9822(00)00515-7
-
(2000)
Curr. Biol.
, vol.10
, pp. 675-678
-
-
Brady, D.M.1
Hardwick, K.G.2
-
5
-
-
33744996707
-
Mitotic checkpoint slippage in humans occurs via cyclin B destruction in the presence of an active checkpoint
-
doi:10.1016/j.cub.2006.04.043
-
Brito, D.A., and C.L. Rieder. 2006. Mitotic checkpoint slippage in humans occurs via cyclin B destruction in the presence of an active checkpoint. Curr. Biol. 16:1194-1200. doi:10.1016/j.cub.2006.04.043
-
(2006)
Curr. Biol.
, vol.16
, pp. 1194-1200
-
-
Brito, D.A.1
Rieder, C.L.2
-
6
-
-
0033231625
-
Two functionally distinct forms of the RSC nucleosome-remodeling complex, containing essential at hook, BAH, and bromodomains
-
doi:10.1016/S1097-2765(00)80382-2
-
Cairns, B.R., A. Schlichter, H. Erdjument-Bromage, P. Tempst, R.D. Kornberg, and F. Winston. 1999. Two functionally distinct forms of the RSC nucleosome-remodeling complex, containing essential AT hook, BAH, and bromodomains. Mol. Cell. 4:715-723. doi:10.1016/S1097-2765(00)80382-2
-
(1999)
Mol. Cell.
, vol.4
, pp. 715-723
-
-
Cairns, B.R.1
Schlichter, A.2
Erdjument-Bromage, H.3
Tempst, P.4
Kornberg, R.D.5
Winston, F.6
-
7
-
-
0030946972
-
Sfh1p, a component of a novel chromatin-remodeling complex, is required for cell cycle progression
-
Cao, Y., B.R. Cairns, R.D. Kornberg, and B.C. Laurent. 1997. Sfh1p, a component of a novel chromatin-remodeling complex, is required for cell cycle progression. Mol. Cell. Biol. 17:3323-3334.
-
(1997)
Mol. Cell. Biol.
, vol.17
, pp. 3323-3334
-
-
Cao, Y.1
Cairns, B.R.2
Kornberg, R.D.3
Laurent, B.C.4
-
8
-
-
29144519877
-
Targeting of cohesin by transcriptionally silent chromatin
-
doi:10.1101/gad.1356305
-
Chang, C.R., C.S. Wu, Y. Hom, and M.R. Gartenberg. 2005. Targeting of cohesin by transcriptionally silent chromatin. Genes Dev. 19:3031-3042. doi:10.1101/gad.1356305
-
(2005)
Genes Dev.
, vol.19
, pp. 3031-3042
-
-
Chang, C.R.1
Wu, C.S.2
Hom, Y.3
Gartenberg, M.R.4
-
9
-
-
0037451120
-
Budding yeast PAK kinases regulate mitotic exit by two different mechanisms
-
doi:10.1083/jcb.200209097
-
Chiroli, E., R. Fraschini, A. Beretta, M. Tonelli, G. Lucchini, and S. Piatti. 2003. Budding yeast PAK kinases regulate mitotic exit by two different mechanisms. J. Cell Biol. 160:857-874. doi:10.1083/jcb.200209097
-
(2003)
J. Cell Biol.
, vol.160
, pp. 857-874
-
-
Chiroli, E.1
Fraschini, R.2
Beretta, A.3
Tonelli, M.4
Lucchini, G.5
Piatti, S.6
-
10
-
-
76749116250
-
Elevated levels of the polo kinase Cdc5 override the Mec1/ATR checkpoint in budding yeast by acting at different steps of the signaling pathway
-
doi:10.1371/journal.pgen.1000763
-
Donnianni, R.A., M. Ferrari, F. Lazzaro, M. Clerici, B. Tamilselvan Nachimuthu, P. Plevani, M. Muzi-Falconi, and A. Pellicioli. 2010. Elevated levels of the polo kinase Cdc5 override the Mec1/ATR checkpoint in budding yeast by acting at different steps of the signaling pathway. PLoS Genet. 6:e1000763. doi:10.1371/journal.pgen.1000763
-
(2010)
PLoS Genet.
, vol.6
-
-
Donnianni, R.A.1
Ferrari, M.2
Lazzaro, F.3
Clerici, M.4
Tamilselvan Nachimuthu, B.5
Plevani, P.6
Muzi-Falconi, M.7
Pellicioli, A.8
-
11
-
-
0242515843
-
Proteomic screen finds pSer/pThr-binding domain localizing Plk1 to mitotic substrates
-
doi:10.1126/science.1079079
-
Elia, A.E., L.C. Cantley, and M.B. Yaffe. 2003a. Proteomic screen finds pSer/pThr-binding domain localizing Plk1 to mitotic substrates. Science. 299:1228-1231. doi:10.1126/science.1079079
-
(2003)
Science
, vol.299
, pp. 1228-1231
-
-
Elia, A.E.1
Cantley, L.C.2
Yaffe, M.B.3
-
12
-
-
10744221449
-
The molecular basis for phosphodependent substrate targeting and regulation of Plks by the Polo-box domain
-
doi:10.1016/S0092-8674(03)00725-6
-
Elia, A.E., P. Rellos, L.F. Haire, J.W. Chao, F.J. Ivins, K. Hoepker, D. Mohammad, L.C. Cantley, S.J. Smerdon, and M.B. Yaffe. 2003b. The molecular basis for phosphodependent substrate targeting and regulation of Plks by the Polo-box domain. Cell. 115:83-95. doi:10.1016/S0092-8674(03)00725-6
-
(2003)
Cell
, vol.115
, pp. 83-95
-
-
Elia, A.E.1
Rellos, P.2
Haire, L.F.3
Chao, J.W.4
Ivins, F.J.5
Hoepker, K.6
Mohammad, D.7
Cantley, L.C.8
Smerdon, S.J.9
Yaffe, M.B.10
-
13
-
-
0033620688
-
Budding yeast Bub2 is localized at spindle pole bodies and activates the mitotic checkpoint via a different pathway from Mad2
-
doi:10.1083/jcb.145.5.979
-
Fraschini, R., E. Formenti, G. Lucchini, and S. Piatti. 1999. Budding yeast Bub2 is localized at spindle pole bodies and activates the mitotic checkpoint via a different pathway from Mad2. J. Cell Biol. 145:979-991. doi:10.1083/jcb.145.5.979
-
(1999)
J. Cell Biol.
, vol.145
, pp. 979-991
-
-
Fraschini, R.1
Formenti, E.2
Lucchini, G.3
Piatti, S.4
-
14
-
-
0034885473
-
Role of the kinetochore protein Ndc10 in mitotic checkpoint activation in Saccharomyces cerevisiae
-
doi:10.1007/s004380100533
-
Fraschini, R., A. Beretta, G. Lucchini, and S. Piatti. 2001a. Role of the kinetochore protein Ndc10 in mitotic checkpoint activation in Saccharomyces cerevisiae. Mol. Genet. Genomics. 266:115-125. doi:10.1007/s004380100533
-
(2001)
Mol. Genet. Genomics.
, vol.266
, pp. 115-125
-
-
Fraschini, R.1
Beretta, A.2
Lucchini, G.3
Piatti, S.4
-
15
-
-
0035803404
-
Bub3 interaction with Mad2, Mad3 and Cdc20 is mediated by WD40 repeats and does not require intact kinetochores
-
doi:10.1093/emboj/20.23.6648
-
Fraschini, R., A. Beretta, L. Sironi, A. Musacchio, G. Lucchini, and S. Piatti. 2001b. Bub3 interaction with Mad2, Mad3 and Cdc20 is mediated by WD40 repeats and does not require intact kinetochores. EMBO J. 20:6648-6659. doi:10.1093/emboj/20.23.6648
-
(2001)
EMBO J.
, vol.20
, pp. 6648-6659
-
-
Fraschini, R.1
Beretta, A.2
Sironi, L.3
Musacchio, A.4
Lucchini, G.5
Piatti, S.6
-
16
-
-
48449098623
-
Cancer cells display profound intra- and interline variation following prolonged exposure to antimitotic drugs
-
doi:10.1016/j.ccr.2008.07.002
-
Gascoigne, K.E., and S.S. Taylor. 2008. Cancer cells display profound intra- and interline variation following prolonged exposure to antimitotic drugs. Cancer Cell. 14:111-122. doi:10.1016/j.ccr.2008.07.002
-
(2008)
Cancer Cell
, vol.14
, pp. 111-122
-
-
Gascoigne, K.E.1
Taylor, S.S.2
-
17
-
-
77951875761
-
Removal of Spindly from microtubule-attached kinetochores controls spindle checkpoint silencing in human cells
-
doi:10.1101/gad.1886810
-
Gassmann, R., A.J. Holland, D. Varma, X. Wan, F. Civril, D.W. Cleveland, K. Oegema, E.D. Salmon, and A. Desai. 2010. Removal of Spindly from microtubule-attached kinetochores controls spindle checkpoint silencing in human cells. Genes Dev. 24:957-971. doi:10.1101/gad.1886810
-
(2010)
Genes Dev.
, vol.24
, pp. 957-971
-
-
Gassmann, R.1
Holland, A.J.2
Varma, D.3
Wan, X.4
Civril, F.5
Cleveland, D.W.6
Oegema, K.7
Salmon, E.D.8
Desai, A.9
-
18
-
-
0029791321
-
Activation of the budding yeast spindle assembly checkpoint without mitotic spindle disruption
-
doi:10.1126/science.273.5277.953
-
Hardwick, K.G., E. Weiss, F.C. Luca, M. Winey, and A.W. Murray. 1996. Activation of the budding yeast spindle assembly checkpoint without mitotic spindle disruption. Science. 273:953-956. doi:10.1126/science.273.5277.953
-
(1996)
Science
, vol.273
, pp. 953-956
-
-
Hardwick, K.G.1
Weiss, E.2
Luca, F.C.3
Winey, M.4
Murray, A.W.5
-
19
-
-
0035945356
-
Cytoplasmic dynein/dynactin drives kinetochore protein transport to the spindle poles and has a role in mitotic spindle checkpoint inactivation
-
doi:10.1083/jcb.200105093
-
Howell, B.J., B.F. McEwen, J.C. Canman, D.B. Hoffman, E.M. Farrar, C.L. Rieder, and E.D. Salmon. 2001. Cytoplasmic dynein/dynactin drives kinetochore protein transport to the spindle poles and has a role in mitotic spindle checkpoint inactivation. J. Cell Biol. 155:1159-1172. doi:10.1083/jcb.200105093
-
(2001)
J. Cell Biol.
, vol.155
, pp. 1159-1172
-
-
Howell, B.J.1
McEwen, B.F.2
Canman, J.C.3
Hoffman, D.B.4
Farrar, E.M.5
Rieder, C.L.6
Salmon, E.D.7
-
20
-
-
0026728755
-
Two Saccharomyces cerevisiae kinesin-related gene products required for mitotic spindle assembly
-
doi:10.1083/jcb.118.1.109
-
Hoyt, M.A., L. He, K.K. Loo, and W.S. Saunders. 1992. Two Saccharomyces cerevisiae kinesin-related gene products required for mitotic spindle assembly. J. Cell Biol. 118:109-120. doi:10.1083/jcb.118.1.109
-
(1992)
J. Cell Biol.
, vol.118
, pp. 109-120
-
-
Hoyt, M.A.1
He, L.2
Loo, K.K.3
Saunders, W.S.4
-
21
-
-
0037405734
-
The yeast RSC chromatin-remodeling complex is required for kinetochore function in chromosome segregation
-
doi:10.1128/MCB.23.9.3202-3215.2003
-
Hsu, J.M., J. Huang, P.B. Meluh, and B.C. Laurent. 2003. The yeast RSC chromatin-remodeling complex is required for kinetochore function in chromosome segregation. Mol. Cell. Biol. 23:3202-3215. doi:10.1128/MCB.23.9.3202-3215.2003
-
(2003)
Mol. Cell. Biol.
, vol.23
, pp. 3202-3215
-
-
Hsu, J.M.1
Huang, J.2
Meluh, P.B.3
Laurent, B.C.4
-
22
-
-
70349452101
-
Evidence that mitotic exit is a better cancer therapeutic target than spindle assembly
-
doi:10.1016/j.ccr.2009.08.020
-
Huang, H.C., J. Shi, J.D. Orth, and T.J. Mitchison. 2009. Evidence that mitotic exit is a better cancer therapeutic target than spindle assembly. Cancer Cell. 16:347-358. doi:10.1016/j.ccr.2009.08.020
-
(2009)
Cancer Cell
, vol.16
, pp. 347-358
-
-
Huang, H.C.1
Shi, J.2
Orth, J.D.3
Mitchison, T.J.4
-
23
-
-
13944262860
-
A role for the RSC chromatin remodeler in regulating cohesion of sister chromatid arms
-
Huang, J., and B.C. Laurent. 2004. A Role for the RSC chromatin remodeler in regulating cohesion of sister chromatid arms. Cell Cycle. 3:973-975. (Pubitemid 40268642)
-
(2004)
Cell Cycle
, vol.3
, Issue.8
, pp. 973-975
-
-
Huang, J.1
Laurent, B.C.2
-
24
-
-
0042822279
-
Association of the RENT complex with non-transcribed and coding regions of rDNA and a regional requirement for the replication fork block protein Fob1 in rDNA silencing
-
doi:10.1101/gad.1108403
-
Huang, J., and D. Moazed. 2003. Association of the RENT complex with non-transcribed and coding regions of rDNA and a regional requirement for the replication fork block protein Fob1 in rDNA silencing. Genes Dev. 17:2162-2176. doi:10.1101/gad.1108403
-
(2003)
Genes Dev.
, vol.17
, pp. 2162-2176
-
-
Huang, J.1
Moazed, D.2
-
25
-
-
0032512748
-
Budding yeast Cdc20: A target of the spindle checkpoint
-
doi:10.1126/science.279.5353.1041
-
Hwang, L.H., L.F. Lau, D.L. Smith, C.A. Mistrot, K.G. Hardwick, E.S. Hwang, A. Amon, and A.W. Murray. 1998. Budding yeast Cdc20: a target of the spindle checkpoint. Science. 279:1041-1044. doi:10.1126/science.279.5353.1041
-
(1998)
Science
, vol.279
, pp. 1041-1044
-
-
Hwang, L.H.1
Lau, L.F.2
Smith, D.L.3
Mistrot, C.A.4
Hardwick, K.G.5
Hwang, E.S.6
Amon, A.7
Murray, A.W.8
-
26
-
-
70149098978
-
Nonredundant requirement for multiple histone modifications for the early anaphase release of the mitotic exit regulator Cdc14 from nucleolar chromatin
-
doi:10.1371/journal.pgen.1000588
-
Hwang, W.W., and H.D. Madhani. 2009. Nonredundant requirement for multiple histone modifications for the early anaphase release of the mitotic exit regulator Cdc14 from nucleolar chromatin. PLoS Genet. 5:e1000588. doi:10.1371/journal.pgen.1000588
-
(2009)
PLoS Genet.
, vol.5
-
-
Hwang, W.W.1
Madhani, H.D.2
-
27
-
-
0042865938
-
S-phase checkpoint proteins Tof1 and Mrc1 form a stable replication-pausing complex
-
doi:10.1038/nature01900
-
Katou, Y., Y. Kanoh, M. Bando, H. Noguchi, H. Tanaka, T. Ashikari, K. Sugimoto, and K. Shirahige. 2003. S-phase checkpoint proteins Tof1 and Mrc1 form a stable replication-pausing complex. Nature. 424:1078-1083. doi:10.1038/nature01900
-
(2003)
Nature
, vol.424
, pp. 1078-1083
-
-
Katou, Y.1
Kanoh, Y.2
Bando, M.3
Noguchi, H.4
Tanaka, H.5
Ashikari, T.6
Sugimoto, K.7
Shirahige, K.8
-
28
-
-
0042831247
-
Mutations in the yeast cyclin-dependent kinase Cdc28 reveal a role in the spindle assembly checkpoint
-
doi:10.1007/s00438-003-0870-y
-
Kitazono, A.A., D.A. Garza, and S.J. Kron. 2003. Mutations in the yeast cyclin-dependent kinase Cdc28 reveal a role in the spindle assembly checkpoint. Mol. Genet. Genomics. 269:672-684. doi:10.1007/s00438-003-0870-y
-
(2003)
Mol. Genet. Genomics.
, vol.269
, pp. 672-684
-
-
Kitazono, A.A.1
Garza, D.A.2
Kron, S.J.3
-
29
-
-
0032775010
-
Epitope tagging of yeast genes using a PCRbased strategy: More tags and improved practical routines
-
doi:10.1002/(SICI)1097-0061(199907)15:10B〈963::AIDYEA399〉3.0. CO;2-W
-
Knop, M., K. Siegers, G. Pereira, W. Zachariae, B. Winsor, K. Nasmyth, and E. Schiebel. 1999. Epitope tagging of yeast genes using a PCRbased strategy: more tags and improved practical routines. Yeast. 15:963-972. doi:10.1002/(SICI)1097-0061(199907)15:10B〈963::AIDYEA399〉3.0.CO;2-W
-
(1999)
Yeast
, vol.15
, pp. 963-972
-
-
Knop, M.1
Siegers, K.2
Pereira, G.3
Zachariae, W.4
Winsor, B.5
Nasmyth, K.6
Schiebel, E.7
-
30
-
-
0036273705
-
Insertional mutagenesis: Transposoninsertion libraries as mutagens in yeast
-
doi:10.1016/S0076-6879(02)50965-4
-
Kumar, A., S. Vidan, and M. Snyder. 2002. Insertional mutagenesis: transposoninsertion libraries as mutagens in yeast. Methods Enzymol. 350:219-229. doi:10.1016/S0076-6879(02)50965-4
-
(2002)
Methods Enzymol.
, vol.350
, pp. 219-229
-
-
Kumar, A.1
Vidan, S.2
Snyder, M.3
-
31
-
-
77953594908
-
Substrate degradation by the anaphase promoting complex occurs during mitotic slippage
-
doi:10.4161/cc.9.9.11519
-
Lee, J., J.A. Kim, R.L. Margolis, and R. Fotedar. 2010. Substrate degradation by the anaphase promoting complex occurs during mitotic slippage. Cell Cycle. 9:1792-1801. doi:10.4161/cc.9.9.11519
-
(2010)
Cell Cycle
, vol.9
, pp. 1792-1801
-
-
Lee, J.1
Kim, J.A.2
Margolis, R.L.3
Fotedar, R.4
-
32
-
-
0033608992
-
Bifurcation of the mitotic checkpoint pathway in budding yeast
-
doi:10.1073/pnas.96.9.4989
-
Li, R. 1999. Bifurcation of the mitotic checkpoint pathway in budding yeast. Proc. Natl. Acad. Sci. USA. 96:4989-4994. doi:10.1073/pnas.96.9.4989
-
(1999)
Proc. Natl. Acad. Sci. USA
, vol.96
, pp. 4989-4994
-
-
Li, R.1
-
33
-
-
0030987085
-
Inactivation of the cyclin-dependent kinase Cdc28 abrogates cell cycle arrest induced by DNA damage and disassembly of mitotic spindles in Saccharomyces cerevisiae
-
Li, X., and M. Cai. 1997. Inactivation of the cyclin-dependent kinase Cdc28 abrogates cell cycle arrest induced by DNA damage and disassembly of mitotic spindles in Saccharomyces cerevisiae. Mol. Cell. Biol. 17:2723-2734.
-
(1997)
Mol. Cell. Biol.
, vol.17
, pp. 2723-2734
-
-
Li, X.1
Cai, M.2
-
34
-
-
69949086843
-
The molecular function of the yeast polo-like kinase Cdc5 in Cdc14 release during early anaphase
-
doi:10.1091/mbc.E08-10-1049
-
Liang, F., F. Jin, H. Liu, and Y. Wang. 2009. The molecular function of the yeast polo-like kinase Cdc5 in Cdc14 release during early anaphase. Mol. Biol. Cell. 20:3671-3679. doi:10.1091/mbc.E08-10-1049
-
(2009)
Mol. Biol. Cell.
, vol.20
, pp. 3671-3679
-
-
Liang, F.1
Jin, F.2
Liu, H.3
Wang, Y.4
-
35
-
-
0027339342
-
An inhibitor of p34CDC28 protein kinase activity from Saccharomyces cerevisiae
-
doi:10.1126/science.8421781
-
Mendenhall, M.D. 1993. An inhibitor of p34CDC28 protein kinase activity from Saccharomyces cerevisiae. Science. 259:216-219. doi:10.1126/science.8421781
-
(1993)
Science
, vol.259
, pp. 216-219
-
-
Mendenhall, M.D.1
-
36
-
-
0030885925
-
Cohesins: Chromosomal proteins that prevent premature separation of sister chromatids
-
doi:10.1016/S0092-8674(01)80007-6
-
Michaelis, C., R. Ciosk, and K. Nasmyth. 1997. Cohesins: chromosomal proteins that prevent premature separation of sister chromatids. Cell. 91:35-45. doi:10.1016/S0092-8674(01)80007-6
-
(1997)
Cell
, vol.91
, pp. 35-45
-
-
Michaelis, C.1
Ciosk, R.2
Nasmyth, K.3
-
37
-
-
67149141853
-
Cdc7p-Dbf4p regulates mitotic exit by inhibiting Polo kinase
-
doi:10.1371/journal.pgen.1000498
-
Miller, C.T., C. Gabrielse, Y.C. Chen, and M. Weinreich. 2009. Cdc7p-Dbf4p regulates mitotic exit by inhibiting Polo kinase. PLoS Genet. 5:e1000498. doi:10.1371/journal.pgen.1000498
-
(2009)
PLoS Genet.
, vol.5
-
-
Miller, C.T.1
Gabrielse, C.2
Chen, Y.C.3
Weinreich, M.4
-
38
-
-
0030464317
-
Protein phosphatase 2A regulates MPF activity and sister chromatid cohesion in budding yeast
-
doi:10.1016/S0960-9822(02)70784-7
-
Minshull, J., A. Straight, A.D. Rudner, A.F. Dernburg, A. Belmont, and A.W. Murray. 1996. Protein phosphatase 2A regulates MPF activity and sister chromatid cohesion in budding yeast. Curr. Biol. 6:1609-1620. doi:10.1016/S0960-9822(02)70784-7
-
(1996)
Curr. Biol.
, vol.6
, pp. 1609-1620
-
-
Minshull, J.1
Straight, A.2
Rudner, A.D.3
Dernburg, A.F.4
Belmont, A.5
Murray, A.W.6
-
39
-
-
34247333444
-
The spindle-assembly checkpoint in space and time
-
doi:10.1038/nrm2163
-
Musacchio, A., and E.D. Salmon. 2007. The spindle-assembly checkpoint in space and time. Nat. Rev. Mol. Cell Biol. 8:379-393. doi:10.1038/nrm2163
-
(2007)
Nat. Rev. Mol. Cell Biol.
, vol.8
, pp. 379-393
-
-
Musacchio, A.1
Salmon, E.D.2
-
40
-
-
0037178719
-
Segregating sister genomes: The molecular biology of chromosome separation
-
doi:10.1126/science.1074757
-
Nasmyth, K. 2002. Segregating sister genomes: the molecular biology of chromosome separation. Science. 297:559-565. doi:10.1126/science.1074757
-
(2002)
Science
, vol.297
, pp. 559-565
-
-
Nasmyth, K.1
-
41
-
-
0036205048
-
Genome-wide location and regulated recruitment of the RSC nucleosome-remodeling complex
-
doi:10.1101/gad.978902
-
Ng, H.H., F. Robert, R.A. Young, and K. Struhl. 2002. Genome-wide location and regulated recruitment of the RSC nucleosome-remodeling complex. Genes Dev. 16:806-819. doi:10.1101/gad.978902
-
(2002)
Genes Dev.
, vol.16
, pp. 806-819
-
-
Ng, H.H.1
Robert, F.2
Young, R.A.3
Struhl, K.4
-
42
-
-
38049055816
-
RSC regulates nucleosome positioning at Pol II genes and density at Pol III genes
-
doi:10.1038/sj.emboj.7601946
-
Parnell, T.J., J.T. Huff, and B.R. Cairns. 2008. RSC regulates nucleosome positioning at Pol II genes and density at Pol III genes. EMBO J. 27:100-110. doi:10.1038/sj.emboj.7601946
-
(2008)
EMBO J.
, vol.27
, pp. 100-110
-
-
Parnell, T.J.1
Huff, J.T.2
Cairns, B.R.3
-
43
-
-
33747589184
-
The anaphase promoting complex/cyclosome: A machine designed to destroy
-
doi:10.1038/nrm1988
-
Peters, J.M. 2006. The anaphase promoting complex/cyclosome: a machine designed to destroy. Nat. Rev. Mol. Cell Biol. 7:644-656. doi:10.1038/nrm1988
-
(2006)
Nat. Rev. Mol. Cell Biol.
, vol.7
, pp. 644-656
-
-
Peters, J.M.1
-
44
-
-
56549103395
-
The cohesin complex and its roles in chromosome biology
-
doi:10.1101/gad.1724308
-
Peters, J.M., A. Tedeschi, and J. Schmitz. 2008. The cohesin complex and its roles in chromosome biology. Genes Dev. 22:3089-3114. doi:10.1101/gad. 1724308
-
(2008)
Genes Dev.
, vol.22
, pp. 3089-3114
-
-
Peters, J.M.1
Tedeschi, A.2
Schmitz, J.3
-
45
-
-
33846931250
-
The spindle position checkpoint in budding yeast: The motherly care of MEN
-
doi:10.1186/1747-1028-1-2
-
Piatti, S., M. Venturetti, E. Chiroli, and R. Fraschini. 2006. The spindle position checkpoint in budding yeast: the motherly care of MEN. Cell Div. 1:2. doi:10.1186/1747-1028-1-2
-
(2006)
Cell Div.
, vol.1
, pp. 2
-
-
Piatti, S.1
Venturetti, M.2
Chiroli, E.3
Fraschini, R.4
-
46
-
-
51649130063
-
Separase cooperates with Zds1 and Zds2 to activate Cdc14 phosphatase in early anaphase
-
doi:10.1083/jcb.200801054
-
Queralt, E., and F. Uhlmann. 2008. Separase cooperates with Zds1 and Zds2 to activate Cdc14 phosphatase in early anaphase. J. Cell Biol. 182:873-883. doi:10.1083/jcb.200801054
-
(2008)
J. Cell Biol.
, vol.182
, pp. 873-883
-
-
Queralt, E.1
Uhlmann, F.2
-
47
-
-
33646507278
-
Downregulation of PP2A(Cdc55) phosphatase by separase initiates mitotic exit in budding yeast
-
doi:10.1016/j.cell.2006.03.038
-
Queralt, E., C. Lehane, B. Novak, and F. Uhlmann. 2006. Downregulation of PP2A(Cdc55) phosphatase by separase initiates mitotic exit in budding yeast. Cell. 125:719-732. doi:10.1016/j.cell.2006.03.038
-
(2006)
Cell
, vol.125
, pp. 719-732
-
-
Queralt, E.1
Lehane, C.2
Novak, B.3
Uhlmann, F.4
-
48
-
-
54049099584
-
The Polo-like kinase Cdc5 interacts with FEAR network components and Cdc14
-
Rahal, R., and A. Amon. 2008. The Polo-like kinase Cdc5 interacts with FEAR network components and Cdc14. Cell Cycle. 7:3262-3272.
-
(2008)
Cell Cycle
, vol.7
, pp. 3262-3272
-
-
Rahal, R.1
Amon, A.2
-
49
-
-
7744233719
-
Stuck in division or passing through: What happens when cells cannot satisfy the spindle assembly checkpoint
-
doi:10.1016/j.devcel.2004.09.002
-
Rieder, C.L., and H. Maiato. 2004. Stuck in division or passing through: what happens when cells cannot satisfy the spindle assembly checkpoint. Dev. Cell. 7:637-651. doi:10.1016/j.devcel.2004.09.002
-
(2004)
Dev. Cell.
, vol.7
, pp. 637-651
-
-
Rieder, C.L.1
Maiato, H.2
-
50
-
-
0034717560
-
Cdc28 activates exit from mitosis in budding yeast
-
doi:10.1083/jcb.149.7.1361
-
Rudner, A.D., K.G. Hardwick, and A.W. Murray. 2000. Cdc28 activates exit from mitosis in budding yeast. J. Cell Biol. 149:1361-1376. doi:10.1083/jcb.149. 7.1361
-
(2000)
J. Cell Biol.
, vol.149
, pp. 1361-1376
-
-
Rudner, A.D.1
Hardwick, K.G.2
Murray, A.W.3
-
51
-
-
0028114987
-
The B-type cyclin kinase inhibitor p40SIC1 controls the G1 to S transition in S. cerevisiae
-
(published erratum appears in Cell. 1996. 84: following 174) doi:10.1016/0092-8674(94)90193-7
-
Schwob, E., T. Böhm, M.D. Mendenhall, and K. Nasmyth. 1994. The B-type cyclin kinase inhibitor p40SIC1 controls the G1 to S transition in S. cerevisiae. Cell. 79:233-244. (published erratum appears in Cell. 1996. 84: following 174) doi:10.1016/0092-8674(94)90193-7
-
(1994)
Cell
, vol.79
, pp. 233-244
-
-
Schwob, E.1
Böhm, T.2
Mendenhall, M.D.3
Nasmyth, K.4
-
52
-
-
0033574594
-
Exit from mitosis is triggered by Tem1-dependent release of the protein phosphatase Cdc14 from nucleolar RENT complex
-
doi:10.1016/S0092-8674(00)80733-3
-
Shou, W., J.H. Seol, A. Shevchenko, C. Baskerville, D. Moazed, Z.W. Chen, J. Jang, A. Shevchenko, H. Charbonneau, and R.J. Deshaies. 1999. Exit from mitosis is triggered by Tem1-dependent release of the protein phosphatase Cdc14 from nucleolar RENT complex. Cell. 97:233-244. doi:10.1016/S0092-8674(00)80733-3
-
(1999)
Cell
, vol.97
, pp. 233-244
-
-
Shou, W.1
Seol, J.H.2
Shevchenko, A.3
Baskerville, C.4
Moazed, D.5
Chen, Z.W.6
Jang, J.7
Shevchenko, A.8
Charbonneau, H.9
Deshaies, R.J.10
-
53
-
-
17944383329
-
Net1 stimulates RNA polymerase I transcription and regulates nucleolar structure independently of controlling mitotic exit
-
doi:10.1016/S1097-2765(01)00291-X
-
Shou, W., K.M. Sakamoto, J. Keener, K.W. Morimoto, E.E. Traverso, R. Azzam, G.J. Hoppe, R.M. Feldman, J. DeModena, D. Moazed, et al. 2001. Net1 stimulates RNA polymerase I transcription and regulates nucleolar structure independently of controlling mitotic exit. Mol. Cell. 8:45-55. doi:10.1016/S1097-2765(01)00291-X
-
(2001)
Mol. Cell.
, vol.8
, pp. 45-55
-
-
Shou, W.1
Sakamoto, K.M.2
Keener, J.3
Morimoto, K.W.4
Traverso, E.E.5
Azzam, R.6
Hoppe, G.J.7
Feldman, R.M.8
DeModena, J.9
Moazed, D.10
-
54
-
-
2542444587
-
Cdc5 influences phosphorylation of Net1 and disassembly of the RENT complex
-
doi:10.1186/1471-2199-3-3
-
Shou, W., R. Azzam, S.L. Chen, M.J. Huddleston, C. Baskerville, H. Charbonneau, R.S. Annan, S.A. Carr, and R.J. Deshaies. 2002. Cdc5 influences phosphorylation of Net1 and disassembly of the RENT complex. BMC Mol. Biol. 3:3. doi:10.1186/1471-2199-3-3
-
(2002)
BMC Mol. Biol.
, vol.3
, pp. 3
-
-
Shou, W.1
Azzam, R.2
Chen, S.L.3
Huddleston, M.J.4
Baskerville, C.5
Charbonneau, H.6
Annan, R.S.7
Carr, S.A.8
Deshaies, R.J.9
-
55
-
-
34548474527
-
Chromatin remodeling proteins interact with pericentrin to regulate centrosome integrity
-
doi:10.1091/mbc.E06-07-0604
-
Sillibourne, J.E., B. Delaval, S. Redick, M. Sinha, and S.J. Doxsey. 2007. Chromatin remodeling proteins interact with pericentrin to regulate centrosome integrity. Mol. Biol. Cell. 18:3667-3680. doi:10.1091/mbc.E06-07-0604
-
(2007)
Mol. Biol. Cell.
, vol.18
, pp. 3667-3680
-
-
Sillibourne, J.E.1
Delaval, B.2
Redick, S.3
Sinha, M.4
Doxsey, S.J.5
-
56
-
-
36048969436
-
A coupled chemical-genetic and bioinformatic approach to Polo-like kinase pathway exploration
-
doi:10.1016/j.chembiol.2007.09.011
-
Snead, J.L., M. Sullivan, D.M. Lowery, M.S. Cohen, C. Zhang, D.H. Randle, J. Taunton, M.B. Yaffe, D.O. Morgan, and K.M. Shokat. 2007. A coupled chemical-genetic and bioinformatic approach to Polo-like kinase pathway exploration. Chem. Biol. 14:1261-1272. doi:10.1016/j.chembiol.2007.09.011
-
(2007)
Chem. Biol.
, vol.14
, pp. 1261-1272
-
-
Snead, J.L.1
Sullivan, M.2
Lowery, D.M.3
Cohen, M.S.4
Zhang, C.5
Randle, D.H.6
Taunton, J.7
Yaffe, M.B.8
Morgan, D.O.9
Shokat, K.M.10
-
57
-
-
0033986962
-
Essential function of the polo box of Cdc5 in subcellular localization and induction of cytokinetic structures
-
doi:10.1128/MCB.20.1.286-298.2000
-
Song, S., T.Z. Grenfell, S. Garfield, R.L. Erikson, and K.S. Lee. 2000. Essential function of the polo box of Cdc5 in subcellular localization and induction of cytokinetic structures. Mol. Cell. Biol. 20:286-298. doi:10.1128/MCB.20.1.286-298.2000
-
(2000)
Mol. Cell. Biol.
, vol.20
, pp. 286-298
-
-
Song, S.1
Grenfell, T.Z.2
Garfield, S.3
Erikson, R.L.4
Lee, K.S.5
-
58
-
-
10944240060
-
Closing mitosis: The functions of the Cdc14 phosphatase and its regulation
-
doi:10.1146/annurev.genet.38.072902.093051
-
Stegmeier, F., and A. Amon. 2004. Closing mitosis: the functions of the Cdc14 phosphatase and its regulation. Annu. Rev. Genet. 38:203-232. doi:10.1146/annurev.genet.38.072902.093051
-
(2004)
Annu. Rev. Genet.
, vol.38
, pp. 203-232
-
-
Stegmeier, F.1
Amon, A.2
-
59
-
-
0037169353
-
Separase, polo kinase, the kinetochore protein Slk19, and Spo12 function in a network that controls Cdc14 localization during early anaphase
-
doi:10.1016/S0092-8674(02)00618-9
-
Stegmeier, F., R. Visintin, and A. Amon. 2002. Separase, polo kinase, the kinetochore protein Slk19, and Spo12 function in a network that controls Cdc14 localization during early anaphase. Cell. 108:207-220. doi:10.1016/S0092- 8674(02)00618-9
-
(2002)
Cell
, vol.108
, pp. 207-220
-
-
Stegmeier, F.1
Visintin, R.2
Amon, A.3
-
60
-
-
1842535193
-
The replication fork block protein Fob1 functions as a negative regulator of the FEAR network
-
doi:10.1016/j.cub.2004.03.009
-
Stegmeier, F., J. Huang, R. Rahal, J. Zmolik, D. Moazed, and A. Amon. 2004. The replication fork block protein Fob1 functions as a negative regulator of the FEAR network. Curr. Biol. 14:467-480. doi:10.1016/j.cub.2004.03.009
-
(2004)
Curr. Biol.
, vol.14
, pp. 467-480
-
-
Stegmeier, F.1
Huang, J.2
Rahal, R.3
Zmolik, J.4
Moazed, D.5
Amon, A.6
-
61
-
-
0027158083
-
Destruction of the CDC28/CLB mitotic kinase is not required for the metaphase to anaphase transition in budding yeast
-
Surana, U., A. Amon, C. Dowzer, J. McGrew, B. Byers, and K. Nasmyth. 1993. Destruction of the CDC28/CLB mitotic kinase is not required for the metaphase to anaphase transition in budding yeast. EMBO J. 12:1969-1978.
-
(1993)
EMBO J.
, vol.12
, pp. 1969-1978
-
-
Surana, U.1
Amon, A.2
Dowzer, C.3
McGrew, J.4
Byers, B.5
Nasmyth, K.6
-
62
-
-
62549130668
-
Budding yeast Wpl1(Rad61)-Pds5 complex counteracts sister chromatid cohesion-establishing reaction
-
doi:10.1016/j.cub.2009.01.062
-
Sutani, T., T. Kawaguchi, R. Kanno, T. Itoh, and K. Shirahige. 2009. Budding yeast Wpl1(Rad61)-Pds5 complex counteracts sister chromatid cohesion-establishing reaction. Curr. Biol. 19:492-497. doi:10.1016/j.cub.2009. 01.062
-
(2009)
Curr. Biol.
, vol.19
, pp. 492-497
-
-
Sutani, T.1
Kawaguchi, T.2
Kanno, R.3
Itoh, T.4
Shirahige, K.5
-
63
-
-
0034959766
-
Secured cutting: Controlling separase at the metaphase to anaphase transition
-
Uhlmann, F. 2001. Secured cutting: controlling separase at the metaphase to anaphase transition. EMBO Rep. 2:487-492.
-
(2001)
EMBO Rep.
, vol.2
, pp. 487-492
-
-
Uhlmann, F.1
-
64
-
-
0032254350
-
The phosphatase Cdc14 triggers mitotic exit by reversal of Cdk-dependent phosphorylation
-
doi:10.1016/S1097-2765(00)80286-5
-
Visintin, R., K. Craig, E.S. Hwang, S. Prinz, M. Tyers, and A. Amon. 1998. The phosphatase Cdc14 triggers mitotic exit by reversal of Cdk-dependent phosphorylation. Mol. Cell. 2:709-718. doi:10.1016/S1097-2765(00)80286-5
-
(1998)
Mol. Cell.
, vol.2
, pp. 709-718
-
-
Visintin, R.1
Craig, K.2
Hwang, E.S.3
Prinz, S.4
Tyers, M.5
Amon, A.6
-
65
-
-
0345687304
-
The role of the polo kinase Cdc5 in controlling Cdc14 localization
-
doi:10.1091/mbc.E03-02-0095
-
Visintin, R., F. Stegmeier, and A. Amon. 2003. The role of the polo kinase Cdc5 in controlling Cdc14 localization. Mol. Biol. Cell. 14:4486-4498. doi:10.1091/mbc.E03-02-0095
-
(2003)
Mol. Biol. Cell.
, vol.14
, pp. 4486-4498
-
-
Visintin, R.1
Stegmeier, F.2
Amon, A.3
-
66
-
-
0028676232
-
New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae
-
doi:10.1002/yea.320101310
-
Wach, A., A. Brachat, R. Pöhlmann, and P. Philippsen. 1994. New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast. 10:1793-1808. doi:10.1002/yea.320101310
-
(1994)
Yeast
, vol.10
, pp. 1793-1808
-
-
Wach, A.1
Brachat, A.2
Pöhlmann, R.3
Philippsen, P.4
-
67
-
-
63049128406
-
Putting the brake on FEAR: Tof2 promotes the biphasic release of Cdc14 phosphatase during mitotic exit
-
doi:10.1091/mbc.E08-08-0879
-
Waples, W.G., C. Chahwan, M. Ciechonska, and B.D. Lavoie. 2009. Putting the brake on FEAR: Tof2 promotes the biphasic release of Cdc14 phosphatase during mitotic exit. Mol. Biol. Cell. 20:245-255. doi:10.1091/mbc.E08-08-0879
-
(2009)
Mol. Biol. Cell.
, vol.20
, pp. 245-255
-
-
Waples, W.G.1
Chahwan, C.2
Ciechonska, M.3
Lavoie, B.D.4
-
68
-
-
0035736325
-
Kinetochore dynein: Its dynamics and role in the transport of the Rough deal checkpoint protein
-
doi:10.1038/ncb1101-1001
-
Wojcik, E., R. Basto, M. Serr, F. Scaërou, R. Karess, and T. Hays. 2001. Kinetochore dynein: its dynamics and role in the transport of the Rough deal checkpoint protein. Nat. Cell Biol. 3:1001-1007. doi:10.1038/ncb1101-1001
-
(2001)
Nat. Cell Biol.
, vol.3
, pp. 1001-1007
-
-
Wojcik, E.1
Basto, R.2
Serr, M.3
Scaërou, F.4
Karess, R.5
Hays, T.6
-
69
-
-
0036265436
-
RSC2, encoding a component of the RSC nucleosome remodeling complex, is essential for 2 micron plasmid maintenance in Saccharomyces cerevisiae
-
doi:10.1128/MCB.22.12.4218-4229.2002
-
Wong, M.C., S.R. Scott-Drew, M.J. Hayes, P.J. Howard, and J.A. Murray. 2002. RSC2, encoding a component of the RSC nucleosome remodeling complex, is essential for 2 micron plasmid maintenance in Saccharomyces cerevisiae. Mol. Cell. Biol. 22:4218-4229. doi:10.1128/MCB.22.12.4218-4229.2002
-
(2002)
Mol. Cell. Biol.
, vol.22
, pp. 4218-4229
-
-
Wong, M.C.1
Scott-Drew, S.R.2
Hayes, M.J.3
Howard, P.J.4
Murray, J.A.5
-
70
-
-
0037416186
-
Function of Cdc2p-dependent Bub1p phosphorylation and Bub1p kinase activity in the mitotic and meiotic spindle checkpoint
-
doi:10.1093/emboj/cdg100
-
Yamaguchi, S., A. Decottignies, and P. Nurse. 2003. Function of Cdc2p-dependent Bub1p phosphorylation and Bub1p kinase activity in the mitotic and meiotic spindle checkpoint. EMBO J. 22:1075-1087. doi:10.1093/emboj/cdg100
-
(2003)
EMBO J.
, vol.22
, pp. 1075-1087
-
-
Yamaguchi, S.1
Decottignies, A.2
Nurse, P.3
-
71
-
-
33746898247
-
Gene function prediction from congruent synthetic lethal interactions in yeast
-
2005.0026. doi:10.1038/msb4100034
-
Ye, P., B.D. Peyser, X. Pan, J.D. Boeke, F.A. Spencer, and J.S. Bader. 2005. Gene function prediction from congruent synthetic lethal interactions in yeast. Mol. Syst. Biol. 1:2005.0026. doi:10.1038/msb4100034
-
(2005)
Mol. Syst. Biol.
, vol.1
-
-
Ye, P.1
Peyser, B.D.2
Pan, X.3
Boeke, J.D.4
Spencer, F.A.5
Bader, J.S.6
-
72
-
-
2542459341
-
Adaptation of a DNA replication checkpoint response depends upon inactivation of Claspin by the Polo-like kinase
-
doi:10.1016/S0092-8674(04)00417-9
-
Yoo, H.Y., A. Kumagai, A. Shevchenko, A. Shevchenko, and W.G. Dunphy. 2004. Adaptation of a DNA replication checkpoint response depends upon inactivation of Claspin by the Polo-like kinase. Cell. 117:575-588. doi:10.1016/S0092-8674(04)00417-9
-
(2004)
Cell
, vol.117
, pp. 575-588
-
-
Yoo, H.Y.1
Kumagai, A.2
Shevchenko, A.3
Shevchenko, A.4
Dunphy, W.G.5
-
73
-
-
0036290237
-
Budding yeast Cdc5 phosphorylates Net1 and assists Cdc14 release from the nucleolus
-
doi:10.1016/S0006-291X(02)00544-2
-
Yoshida, S., and A. Toh-e. 2002. Budding yeast Cdc5 phosphorylates Net1 and assists Cdc14 release from the nucleolus. Biochem. Biophys. Res. Commun. 294:687-691. doi:10.1016/S0006-291X(02)00544-2
-
(2002)
Biochem. Biophys. Res. Commun.
, vol.294
, pp. 687-691
-
-
Yoshida, S.1
Toh-e, A.2
|