-
2
-
-
25444522689
-
Fast kernel classifiers with online and active learning
-
A. Bordes, S. Ertekin, J. Weston, and Léon Bottou. Fast kernel classifiers with online and active learning. Journal of Machine Learning Research, 5:1579-1619, 2005.
-
(2005)
Journal of Machine Learning Research
, vol.5
, pp. 1579-1619
-
-
Bordes, A.1
Ertekin, S.2
Weston, J.3
Bottou, L.4
-
5
-
-
29144499905
-
Working set selection using the second order information for training support vector machines
-
R.-E. Fan, P.-H. Chen, and C.-J. Lin. Working set selection using the second order information for training support vector machines. Journal of Machine Learning Research, 6:1889-1918, 2005.
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 1889-1918
-
-
Fan, R.-E.1
Chen, P.-H.2
Lin, C.-J.3
-
6
-
-
0037399781
-
Polynomial-time decomposition algorithms for support vector machines
-
D. Hush and C. Scovel. Polynomial-time decomposition algorithms for support vector machines. Machine Learning, 51:51-71, 2003.
-
(2003)
Machine Learning
, vol.51
, pp. 51-71
-
-
Hush, D.1
Scovel, C.2
-
7
-
-
0002714543
-
Making large-scale SVM learning practical
-
B. Schölkopf, C. Burges, and A. Smola, editors, chapter 11. MIT Press
-
T. Joachims. Making large-scale SVM learning practical. In B. Schölkopf, C. Burges, and A. Smola, editors, Advances in Kernel Methods - Support Vector Learning, chapter 11, pages 169-184. MIT Press, 1999.
-
(1999)
Advances in Kernel Methods - Support Vector Learning
, pp. 169-184
-
-
Joachims, T.1
-
8
-
-
0036163654
-
Convergence of a generalized SMO algorithm for SVM classifier design
-
S. S. Keerthi and E. G. Gilbert. Convergence of a generalized SMO algorithm for SVM classifier design. Machine Learning, 46:351-360, 2002.
-
(2002)
Machine Learning
, vol.46
, pp. 351-360
-
-
Keerthi, S.S.1
Gilbert, E.G.2
-
9
-
-
0033640690
-
A fast iterative nearest point algorithm for support vector machine classifier design
-
S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy. A fast iterative nearest point algorithm for support vector machine classifier design. IEEE Transactions on Neural Networks, 11(1):124-136, 2000.
-
(2000)
IEEE Transactions on Neural Networks
, vol.11
, Issue.1
, pp. 124-136
-
-
Keerthi, S.S.1
Shevade, S.K.2
Bhattacharyya, C.3
Murthy, K.R.K.4
-
10
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.
-
(1998)
Proceedings of the IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
11
-
-
0035506741
-
On the convergence of the decomposition method for support vector machines
-
C.-J. Lin. On the convergence of the decomposition method for support vector machines. IEEE Transactions on Neural Networks, 12:1288-1298, 2001.
-
(2001)
IEEE Transactions on Neural Networks
, vol.12
, pp. 1288-1298
-
-
Lin, C.-J.1
-
12
-
-
9444296042
-
A general convergence theorem for the decomposition method
-
John Shawe-Taylor and Yoram Singer, editors, Proceedings of the 17th Annual Conference on Learning Theory, COLT 2004. Springer-Verlag
-
N. List and H. U. Simon. A general convergence theorem for the decomposition method. In John Shawe-Taylor and Yoram Singer, editors, Proceedings of the 17th Annual Conference on Learning Theory, COLT 2004, volume 3120 of LNCS, pages 363-377. Springer-Verlag, 2004.
-
(2004)
LNCS
, vol.3120
, pp. 363-377
-
-
List, N.1
Simon, H.U.2
-
13
-
-
26944489027
-
General polynomial time decomposition algorithms
-
Peter Auer and Ron Meir, editors, Proceedings of the 18th Annual Conference on Learning Theory, COLT 2005. Springer-Verlag
-
N. List and H. U. Simon. General polynomial time decomposition algorithms. In Peter Auer and Ron Meir, editors, Proceedings of the 18th Annual Conference on Learning Theory, COLT 2005, volume 3559 of LNCS, pages 308-322. Springer-Verlag, 2005.
-
(2005)
LNCS
, vol.3559
, pp. 308-322
-
-
List, N.1
Simon, H.U.2
-
14
-
-
0031334889
-
Improved training algorithm for support vector machines
-
J. Principe, L. Giles, N. Morgan, and E. Wilson, editors. IEEE Press
-
E. Osuna, R. Freund, and F. Girosi. Improved training algorithm for support vector machines. In J. Principe, L. Giles, N. Morgan, and E. Wilson, editors, Neural Networks for Signal Processing VII, pages 276-285. IEEE Press, 1997.
-
(1997)
Neural Networks for Signal Processing VII
, pp. 276-285
-
-
Osuna, E.1
Freund, R.2
Girosi, F.3
-
15
-
-
0003120218
-
Fast training of support vector machines using sequential minimal optimization
-
B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, chapter 12. MIT Press
-
J. Platt. Fast training of support vector machines using sequential minimal optimization. In B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel Methods - Support Vector Learning, chapter 12, pages 185-208. MIT Press, 1999.
-
(1999)
Advances in Kernel Methods - Support Vector Learning
, pp. 185-208
-
-
Platt, J.1
-
17
-
-
19344375172
-
Rigorous proof of termination of SMO algorithm for support vector machines
-
N. Takahashi and T. Nishi. Rigorous proof of termination of SMO algorithm for support vector machines. IEEE Transaction on Neural Networks, 16(3):774-776, 2005.
-
(2005)
IEEE Transaction on Neural Networks
, vol.16
, Issue.3
, pp. 774-776
-
-
Takahashi, N.1
Nishi, T.2
-
20
-
-
1942516515
-
SimpleSVM
-
T. Fawcett and N. Mishra, editors, AAAI Press
-
S. V. N. Vishwanathan, A. J. Smola, and M. N. Murty. SimpleSVM. In T. Fawcett and N. Mishra, editors, Proceedings of the Twentieth International Conference on Machine Learning (ICML-2003), pages 760-767. AAAI Press, 2003.
-
(2003)
Proceedings of the Twentieth International Conference on Machine Learning (ICML-2003)
, pp. 760-767
-
-
Vishwanathan, S.V.N.1
Smola, A.J.2
Murty, M.N.3
|