메뉴 건너뛰기




Volumn 12, Issue 11, 2000, Pages 2719-2741

A Bayesian committee machine

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ARTICLE; ARTIFICIAL INTELLIGENCE; BAYES THEOREM; DIABETES MELLITUS; HUMAN; NORMAL DISTRIBUTION; ONLINE SYSTEM;

EID: 0034320395     PISSN: 08997667     EISSN: None     Source Type: Journal    
DOI: 10.1162/089976600300014908     Document Type: Article
Times cited : (401)

References (29)
  • 2
    • 84877738467 scopus 로고    scopus 로고
    • Finite-dimensional approximation of gaussian processes
    • M. S. Kearns, S. A. Solla, & D. A. Cohn (Eds.), Cambridge MA: MIT Press
    • Ferrari-Trecate, G., Williams, C. K. I., & Opper, M. (1999). Finite-dimensional approximation of gaussian processes. In M. S. Kearns, S. A. Solla, & D. A. Cohn (Eds.), Advances in neural information processing systems, 11 (218-224). Cambridge MA: MIT Press.
    • (1999) Advances in Neural Information Processing Systems , vol.11 , pp. 218-224
    • Ferrari-Trecate, G.1    Williams, C.K.I.2    Opper, M.3
  • 4
    • 0000249788 scopus 로고    scopus 로고
    • An equivalence between sparse approximation and support vector machines
    • Girosi, F. (1998). An equivalence between sparse approximation and support vector machines. Neural Computation, 10(6), 1454-1480.
    • (1998) Neural Computation , vol.10 , Issue.6 , pp. 1454-1480
    • Girosi, F.1
  • 6
    • 0000372206 scopus 로고
    • Bayesian model comparison and backprop nets
    • J. E. Moody, S. J. Hanson, & R. P. Lippmann (Eds.), San Mateo, CA: Morgan Kaufmann
    • MacKay, D. J. C. (1992). Bayesian model comparison and backprop nets. In J. E. Moody, S. J. Hanson, & R. P. Lippmann (Eds.), Advances in neural information processing systems, 4 (839-846). San Mateo, CA: Morgan Kaufmann.
    • (1992) Advances in Neural Information Processing Systems , vol.4 , pp. 839-846
    • MacKay, D.J.C.1
  • 7
    • 0003319647 scopus 로고    scopus 로고
    • Introduction to gaussian processes
    • C. Bishop (Ed.), Berlin: Springer-Verlag
    • MacKay, D. J. C. (1998). Introduction to gaussian processes. In C. Bishop (Ed.), Neural networks and machine learning. Berlin: Springer-Verlag.
    • (1998) Neural Networks and Machine Learning
    • MacKay, D.J.C.1
  • 8
    • 0000902690 scopus 로고
    • The effective number of parameters: An analysis of generalization and regularization in nonlinear learning systems
    • J. E. Moody, S. J. Hanson, & R. P. Lippmann (Eds.), San Mateo, CA: Morgan Kaufmann
    • Moody, J. E. (1992). The effective number of parameters: An analysis of generalization and regularization in nonlinear learning systems. In J. E. Moody, S. J. Hanson, & R. P. Lippmann (Eds.), Advances in neural information processing systems, 4 (pp. 847-854). San Mateo, CA: Morgan Kaufmann.
    • (1992) Advances in Neural Information Processing Systems , vol.4 , pp. 847-854
    • Moody, J.E.1
  • 9
    • 84899007626 scopus 로고    scopus 로고
    • Smoothing regularizers for projective basis function networks
    • M. C. Mozer, M. I. Jordan, & T. Petsche (Eds.), Cambridge, MA: MIT Press
    • Moody, J. E., & Rögnvaldsson, T. S. (1997). Smoothing regularizers for projective basis function networks. In M. C. Mozer, M. I. Jordan, & T. Petsche (Eds.), Advances in neural information processing systems, 9. Cambridge, MA: MIT Press.
    • (1997) Advances in Neural Information Processing Systems , vol.9
    • Moody, J.E.1    Rögnvaldsson, T.S.2
  • 12
    • 0025490985 scopus 로고
    • Networks for approximation and learning
    • Poggio, T., & Girosi, F. (1990). Networks for approximation and learning. Proceedings of the IEEE, 78, 1481-1497.
    • (1990) Proceedings of the IEEE , vol.78 , pp. 1481-1497
    • Poggio, T.1    Girosi, F.2
  • 13
    • 0000473139 scopus 로고    scopus 로고
    • A sparse representation for function approximation
    • Poggio, T., & Girosi, F. (1998). A sparse representation for function approximation. Neural Computation, 10(6), 1445-11454.
    • (1998) Neural Computation , vol.10 , Issue.6 , pp. 1445-11454
    • Poggio, T.1    Girosi, F.2
  • 16
    • 0041016840 scopus 로고
    • Bayesian numerical analysis
    • W. T., Jr. Grandy, & P. Milonni (Eds.), Cambridge: Cambridge University Press
    • Skilling, J. (1993). Bayesian numerical analysis. In W. T., Jr. Grandy, & P. Milonni (Eds.), Physics and probability. Cambridge: Cambridge University Press.
    • (1993) Physics and Probability
    • Skilling, J.1
  • 17
    • 0032098361 scopus 로고    scopus 로고
    • The connection between regularization operators and support vector kernels
    • Smola, A. J., Schölkopf, B., & Müller, K.-R. (1998). The connection between regularization operators and support vector kernels. Neural Networks, 11, 637-649.
    • (1998) Neural Networks , vol.11 , pp. 637-649
    • Smola, A.J.1    Schölkopf, B.2    Müller, K.-R.3
  • 18
    • 0000078841 scopus 로고    scopus 로고
    • Averaging regularized estimators
    • Taniguchi, M., & Tresp, V. (1997). Averaging regularized estimators. Neural Computation, 9(5), 1163-1178.
    • (1997) Neural Computation , vol.9 , Issue.5 , pp. 1163-1178
    • Taniguchi, M.1    Tresp, V.2
  • 19
    • 85153970023 scopus 로고
    • Combining estimators using non-constant weighting functions
    • G. Tesauro, D. S. Touretzky, & T. K. Leen (Eds.), Cambridge, MA: MIT Press
    • Tresp, V., & Taniguchi, M. (1995). Combining estimators using non-constant weighting functions. In G. Tesauro, D. S. Touretzky, & T. K. Leen (Eds.), Advances in neural information processing systems, 7 (pp. 419-426). Cambridge, MA: MIT Press.
    • (1995) Advances in Neural Information Processing Systems , vol.7 , pp. 419-426
    • Tresp, V.1    Taniguchi, M.2
  • 21
    • 0003466536 scopus 로고
    • Philadelphia: Society for Industrial and Applied Mathematics
    • Wahba, G. (1990). Spline models for observational data. Philadelphia: Society for Industrial and Applied Mathematics.
    • (1990) Spline Models for Observational Data
    • Wahba, G.1
  • 22
    • 0000939344 scopus 로고
    • Bayesian "confidence intervals" for the cross-validated smoothing spline
    • Wahba, G. (1983). Bayesian "confidence intervals" for the cross-validated smoothing spline. J. Roy. Stat. Soc. Ser. B, 45(1), 133-150.
    • (1983) J. Roy. Stat. Soc. Ser. B , vol.45 , Issue.1 , pp. 133-150
    • Wahba, G.1
  • 24
    • 84898974226 scopus 로고    scopus 로고
    • Computing with infinite networks
    • M. C. Mozer, M. I. Jordan, & T. Petsche (Eds.), Cambridge, MA: MIT Press
    • Williams, C. K. I. (1997). Computing with infinite networks. In M. C. Mozer, M. I. Jordan, & T. Petsche (Eds.), Advances in neural information processing systems, 9. Cambridge, MA: MIT Press.
    • (1997) Advances in Neural Information Processing Systems , vol.9
    • Williams, C.K.I.1
  • 25
    • 0000704059 scopus 로고    scopus 로고
    • Computing with infinite neural networks
    • Williams, C. K. I. (1998a). Computing with infinite neural networks. Neural Computation, 10, 1203-1216.
    • (1998) Neural Computation , vol.10 , pp. 1203-1216
    • Williams, C.K.I.1
  • 26
    • 0003017575 scopus 로고    scopus 로고
    • Prediction with gaussian processes: From linear regression to linear prediction and beyond
    • M. I. Jordan (Ed.), Boston: Kluwer
    • Williams, C. K. I. (1998b). Prediction with gaussian processes: From linear regression to linear prediction and beyond. In M. I. Jordan (Ed.), Learning in graphical models (pp. 599-621). Boston: Kluwer.
    • (1998) Learning in Graphical Models , pp. 599-621
    • Williams, C.K.I.1
  • 27
    • 85072768928 scopus 로고    scopus 로고
    • Gaussian processes for regression
    • D. S. Touretzky, M. C. Mozer, & M. E. Hasselmo (Eds.), Cambridge, MA: MIT Press
    • Williams, C. K. I., & Rasmussen, C. E. (1996). Gaussian processes for regression. In D. S. Touretzky, M. C. Mozer, & M. E. Hasselmo (Eds.), Advances in neural information processing systems, 8 (pp. 514-520). Cambridge, MA: MIT Press.
    • (1996) Advances in Neural Information Processing Systems , vol.8 , pp. 514-520
    • Williams, C.K.I.1    Rasmussen, C.E.2
  • 28
    • 0030536030 scopus 로고    scopus 로고
    • Bayesian regression filters and the issue of priors
    • Zhu, H., & Rohwer (1996). Bayesian regression filters and the issue of priors. Neural Comp. Appl., 4, 130-142.
    • (1996) Neural Comp. Appl. , vol.4 , pp. 130-142
    • Zhu, H.1
  • 29
    • 0039813137 scopus 로고    scopus 로고
    • Gaussian regression and optimal finite dimensional linear models
    • C. M. Bishop (Ed.), Berlin: Springer-Verlag
    • Zhu, H., Williams, C. K. I., Rohwer, R., & Morciniec, M. (1998). Gaussian regression and optimal finite dimensional linear models. In C. M. Bishop (Ed.), Neural networks and machine learning (315-332). Berlin: Springer-Verlag.
    • (1998) Neural Networks and Machine Learning , pp. 315-332
    • Zhu, H.1    Williams, C.K.I.2    Rohwer, R.3    Morciniec, M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.