-
2
-
-
84877738467
-
Finite-dimensional approximation of gaussian processes
-
M. S. Kearns, S. A. Solla, & D. A. Cohn (Eds.), Cambridge MA: MIT Press
-
Ferrari-Trecate, G., Williams, C. K. I., & Opper, M. (1999). Finite-dimensional approximation of gaussian processes. In M. S. Kearns, S. A. Solla, & D. A. Cohn (Eds.), Advances in neural information processing systems, 11 (218-224). Cambridge MA: MIT Press.
-
(1999)
Advances in Neural Information Processing Systems
, vol.11
, pp. 218-224
-
-
Ferrari-Trecate, G.1
Williams, C.K.I.2
Opper, M.3
-
4
-
-
0000249788
-
An equivalence between sparse approximation and support vector machines
-
Girosi, F. (1998). An equivalence between sparse approximation and support vector machines. Neural Computation, 10(6), 1454-1480.
-
(1998)
Neural Computation
, vol.10
, Issue.6
, pp. 1454-1480
-
-
Girosi, F.1
-
6
-
-
0000372206
-
Bayesian model comparison and backprop nets
-
J. E. Moody, S. J. Hanson, & R. P. Lippmann (Eds.), San Mateo, CA: Morgan Kaufmann
-
MacKay, D. J. C. (1992). Bayesian model comparison and backprop nets. In J. E. Moody, S. J. Hanson, & R. P. Lippmann (Eds.), Advances in neural information processing systems, 4 (839-846). San Mateo, CA: Morgan Kaufmann.
-
(1992)
Advances in Neural Information Processing Systems
, vol.4
, pp. 839-846
-
-
MacKay, D.J.C.1
-
7
-
-
0003319647
-
Introduction to gaussian processes
-
C. Bishop (Ed.), Berlin: Springer-Verlag
-
MacKay, D. J. C. (1998). Introduction to gaussian processes. In C. Bishop (Ed.), Neural networks and machine learning. Berlin: Springer-Verlag.
-
(1998)
Neural Networks and Machine Learning
-
-
MacKay, D.J.C.1
-
8
-
-
0000902690
-
The effective number of parameters: An analysis of generalization and regularization in nonlinear learning systems
-
J. E. Moody, S. J. Hanson, & R. P. Lippmann (Eds.), San Mateo, CA: Morgan Kaufmann
-
Moody, J. E. (1992). The effective number of parameters: An analysis of generalization and regularization in nonlinear learning systems. In J. E. Moody, S. J. Hanson, & R. P. Lippmann (Eds.), Advances in neural information processing systems, 4 (pp. 847-854). San Mateo, CA: Morgan Kaufmann.
-
(1992)
Advances in Neural Information Processing Systems
, vol.4
, pp. 847-854
-
-
Moody, J.E.1
-
9
-
-
84899007626
-
Smoothing regularizers for projective basis function networks
-
M. C. Mozer, M. I. Jordan, & T. Petsche (Eds.), Cambridge, MA: MIT Press
-
Moody, J. E., & Rögnvaldsson, T. S. (1997). Smoothing regularizers for projective basis function networks. In M. C. Mozer, M. I. Jordan, & T. Petsche (Eds.), Advances in neural information processing systems, 9. Cambridge, MA: MIT Press.
-
(1997)
Advances in Neural Information Processing Systems
, vol.9
-
-
Moody, J.E.1
Rögnvaldsson, T.S.2
-
12
-
-
0025490985
-
Networks for approximation and learning
-
Poggio, T., & Girosi, F. (1990). Networks for approximation and learning. Proceedings of the IEEE, 78, 1481-1497.
-
(1990)
Proceedings of the IEEE
, vol.78
, pp. 1481-1497
-
-
Poggio, T.1
Girosi, F.2
-
13
-
-
0000473139
-
A sparse representation for function approximation
-
Poggio, T., & Girosi, F. (1998). A sparse representation for function approximation. Neural Computation, 10(6), 1445-11454.
-
(1998)
Neural Computation
, vol.10
, Issue.6
, pp. 1445-11454
-
-
Poggio, T.1
Girosi, F.2
-
16
-
-
0041016840
-
Bayesian numerical analysis
-
W. T., Jr. Grandy, & P. Milonni (Eds.), Cambridge: Cambridge University Press
-
Skilling, J. (1993). Bayesian numerical analysis. In W. T., Jr. Grandy, & P. Milonni (Eds.), Physics and probability. Cambridge: Cambridge University Press.
-
(1993)
Physics and Probability
-
-
Skilling, J.1
-
17
-
-
0032098361
-
The connection between regularization operators and support vector kernels
-
Smola, A. J., Schölkopf, B., & Müller, K.-R. (1998). The connection between regularization operators and support vector kernels. Neural Networks, 11, 637-649.
-
(1998)
Neural Networks
, vol.11
, pp. 637-649
-
-
Smola, A.J.1
Schölkopf, B.2
Müller, K.-R.3
-
18
-
-
0000078841
-
Averaging regularized estimators
-
Taniguchi, M., & Tresp, V. (1997). Averaging regularized estimators. Neural Computation, 9(5), 1163-1178.
-
(1997)
Neural Computation
, vol.9
, Issue.5
, pp. 1163-1178
-
-
Taniguchi, M.1
Tresp, V.2
-
19
-
-
85153970023
-
Combining estimators using non-constant weighting functions
-
G. Tesauro, D. S. Touretzky, & T. K. Leen (Eds.), Cambridge, MA: MIT Press
-
Tresp, V., & Taniguchi, M. (1995). Combining estimators using non-constant weighting functions. In G. Tesauro, D. S. Touretzky, & T. K. Leen (Eds.), Advances in neural information processing systems, 7 (pp. 419-426). Cambridge, MA: MIT Press.
-
(1995)
Advances in Neural Information Processing Systems
, vol.7
, pp. 419-426
-
-
Tresp, V.1
Taniguchi, M.2
-
21
-
-
0003466536
-
-
Philadelphia: Society for Industrial and Applied Mathematics
-
Wahba, G. (1990). Spline models for observational data. Philadelphia: Society for Industrial and Applied Mathematics.
-
(1990)
Spline Models for Observational Data
-
-
Wahba, G.1
-
22
-
-
0000939344
-
Bayesian "confidence intervals" for the cross-validated smoothing spline
-
Wahba, G. (1983). Bayesian "confidence intervals" for the cross-validated smoothing spline. J. Roy. Stat. Soc. Ser. B, 45(1), 133-150.
-
(1983)
J. Roy. Stat. Soc. Ser. B
, vol.45
, Issue.1
, pp. 133-150
-
-
Wahba, G.1
-
24
-
-
84898974226
-
Computing with infinite networks
-
M. C. Mozer, M. I. Jordan, & T. Petsche (Eds.), Cambridge, MA: MIT Press
-
Williams, C. K. I. (1997). Computing with infinite networks. In M. C. Mozer, M. I. Jordan, & T. Petsche (Eds.), Advances in neural information processing systems, 9. Cambridge, MA: MIT Press.
-
(1997)
Advances in Neural Information Processing Systems
, vol.9
-
-
Williams, C.K.I.1
-
25
-
-
0000704059
-
Computing with infinite neural networks
-
Williams, C. K. I. (1998a). Computing with infinite neural networks. Neural Computation, 10, 1203-1216.
-
(1998)
Neural Computation
, vol.10
, pp. 1203-1216
-
-
Williams, C.K.I.1
-
26
-
-
0003017575
-
Prediction with gaussian processes: From linear regression to linear prediction and beyond
-
M. I. Jordan (Ed.), Boston: Kluwer
-
Williams, C. K. I. (1998b). Prediction with gaussian processes: From linear regression to linear prediction and beyond. In M. I. Jordan (Ed.), Learning in graphical models (pp. 599-621). Boston: Kluwer.
-
(1998)
Learning in Graphical Models
, pp. 599-621
-
-
Williams, C.K.I.1
-
27
-
-
85072768928
-
Gaussian processes for regression
-
D. S. Touretzky, M. C. Mozer, & M. E. Hasselmo (Eds.), Cambridge, MA: MIT Press
-
Williams, C. K. I., & Rasmussen, C. E. (1996). Gaussian processes for regression. In D. S. Touretzky, M. C. Mozer, & M. E. Hasselmo (Eds.), Advances in neural information processing systems, 8 (pp. 514-520). Cambridge, MA: MIT Press.
-
(1996)
Advances in Neural Information Processing Systems
, vol.8
, pp. 514-520
-
-
Williams, C.K.I.1
Rasmussen, C.E.2
-
28
-
-
0030536030
-
Bayesian regression filters and the issue of priors
-
Zhu, H., & Rohwer (1996). Bayesian regression filters and the issue of priors. Neural Comp. Appl., 4, 130-142.
-
(1996)
Neural Comp. Appl.
, vol.4
, pp. 130-142
-
-
Zhu, H.1
-
29
-
-
0039813137
-
Gaussian regression and optimal finite dimensional linear models
-
C. M. Bishop (Ed.), Berlin: Springer-Verlag
-
Zhu, H., Williams, C. K. I., Rohwer, R., & Morciniec, M. (1998). Gaussian regression and optimal finite dimensional linear models. In C. M. Bishop (Ed.), Neural networks and machine learning (315-332). Berlin: Springer-Verlag.
-
(1998)
Neural Networks and Machine Learning
, pp. 315-332
-
-
Zhu, H.1
Williams, C.K.I.2
Rohwer, R.3
Morciniec, M.4
|