메뉴 건너뛰기




Volumn 115, Issue 10, 2010, Pages

Neural network modeling and an uncertainty analysis in Bayesian framework: A case study from the KTB borehole site

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL NEURAL NETWORK; BAYESIAN ANALYSIS; DATA SET; DEEP DRILLING; KTB BOREHOLE; LITHOFACIES; MODELING; PROBABILITY; UNCERTAINTY ANALYSIS;

EID: 78049494432     PISSN: 21699313     EISSN: 21699356     Source Type: Journal    
DOI: 10.1029/2010JB000864     Document Type: Article
Times cited : (51)

References (56)
  • 1
    • 4143150610 scopus 로고    scopus 로고
    • Neural network uncertainty assessment using Bayesian statistics with application to remote sensing: 1. Network weights
    • DOI 10.1029/2003JD004173
    • Aires, F. (2004), Neural network uncertainty assessment using Bayesian statistics with application to remote sensing: 1. Network weights, J. Geophys. Res., 109, D10303, doi:10.1029/2003JD004173. (Pubitemid 39102692)
    • (2004) Journal of Geophysical Research D: Atmospheres , vol.109 , Issue.10
    • Aires, F.1
  • 2
    • 12844272223 scopus 로고    scopus 로고
    • Inversion of nuclear well-logging data using neural networks
    • Aristodemou, E., C. Pain, C. Oliveira, and T. Goddard (2005), Inversion of nuclear well-logging data using neural networks, Geophys. Prospect., 53, 103-120.
    • (2005) Geophys. Prospect. , vol.53 , pp. 103-120
    • Aristodemou, E.1    Pain, C.2    Oliveira, C.3    Goddard, T.4
  • 3
    • 0000290859 scopus 로고
    • Application of neural network to the problem of mineral identification from well logs
    • Baldwin, J., A. R. M. Bateman, and C. L. Wheatley (1990), Application of neural network to the problem of mineral identification from well logs, Log Anal., 31, 279-293.
    • (1990) Log Anal. , vol.31 , pp. 279-293
    • Baldwin, J.1    Bateman, A.R.M.2    Wheatley, C.L.3
  • 4
    • 0032925830 scopus 로고    scopus 로고
    • Inferring the lithology of borehole rocks by applying neural network classifiers to downwhole logs: An example from the Ocean Drilling Program
    • Benaouda, D., G. Wadge, R. B. Whitmarsh, R. G. Rothwell, and C. MacLeod (1999), Inferring the lithology of borehole rocks by applying neural network classifiers to downwhole logs: An example from the Ocean Drilling Program, Geophys. J. Int., 136, 477-491.
    • (1999) Geophys. J. Int. , vol.136 , pp. 477-491
    • Benaouda, D.1    Wadge, G.2    Whitmarsh, R.B.3    Rothwell, R.G.4    MacLeod, C.5
  • 6
    • 33748880619 scopus 로고    scopus 로고
    • Enhanced interpretation of magnetic survey data from archaeological sites using artificial neural networks
    • Bescoby, D. J., G. C. Cawley, and P. N. Chroston (2006), Enhanced interpretation of magnetic survey data from archaeological sites using artificial neural networks, Geophysics, 71(5), H45-H53.
    • (2006) Geophysics , vol.71 , Issue.5
    • Bescoby, D.J.1    Cawley, G.C.2    Chroston, P.N.3
  • 8
    • 0033540311 scopus 로고    scopus 로고
    • Lithologic tomography: From plural geophysical data to lithology estimation
    • Bosch, M. (1999), Lithologic tomography: From plural geophysical data to lithology estimation, J. Geophys. Res., 104 (B1), 749-766.
    • (1999) J. Geophys. Res. , vol.104 , Issue.B1 , pp. 749-766
    • Bosch, M.1
  • 9
    • 0035428916 scopus 로고    scopus 로고
    • Joint inversion of gravity and magnetic data under lithologic constraints
    • Bosch, M., and J. McGaughey (2001), Joint inversion of gravity and magnetic data under lithologic constraints, Leading Edge, 20, 877-881.
    • (2001) Leading Edge , vol.20 , pp. 877-881
    • Bosch, M.1    McGaughey, J.2
  • 10
    • 0034942544 scopus 로고    scopus 로고
    • Lithologic tomography: An application to geophysical data from the Cadomian belt of northern Brittany, France
    • Bosch, M., A. Gullen, and P. Ledru (2001), Lithologic tomography: An application to geophysical data from the Cadomian belt of northern Brittany, France, Tecton., 331, 197-227.
    • (2001) Tecton. , vol.331 , pp. 197-227
    • Bosch, M.1    Gullen, A.2    Ledru, P.3
  • 11
    • 0001561263 scopus 로고
    • Bayesian back propagation
    • Buntine, W. L., and A. S. Weigend (1991), Bayesian back propagation, Complex Syst., 5, 603-643.
    • (1991) Complex Syst. , vol.5 , pp. 603-643
    • Buntine, W.L.1    Weigend, A.S.2
  • 12
    • 0023596047 scopus 로고
    • Determination of lithology from well logs by statistical analysis
    • Busch, J. M., W. G. Fortney, and L. N. Berry (1987), Determination of lithology from well logs by statistical analysis, SPE Form. Eval., 2, 412-418.
    • (1987) SPE Form. Eval. , vol.2 , pp. 412-418
    • Busch, J.M.1    Fortney, W.G.2    Berry, L.N.3
  • 13
    • 0342264727 scopus 로고    scopus 로고
    • Artificial neural networks for parameter estimation in geophysics
    • Calderon-Macias, C., M. K. Sen, and P. L. Stoffa (2000), Artificial neural networks for parameter estimation in geophysics, Geophys. Prosp., 48, 21-47.
    • (2000) Geophys. Prosp. , vol.48 , pp. 21-47
    • Calderon-Macias, C.1    Sen, M.K.2    Stoffa, P.L.3
  • 14
    • 15944365544 scopus 로고    scopus 로고
    • A neural network model for predicting aquifer water level elevations
    • Coppola, E. A., Jr., A. J. Rana, M. M. Poulton, F. Szidarovszky, and V. W. Uhl (2005), A neural network model for predicting aquifer water level elevations, Ground Water, 43(2), 231-241.
    • (2005) Ground Water , vol.43 , Issue.2 , pp. 231-241
    • Coppola Jr., E.A.1    Rana, A.J.2    Poulton, M.M.3    Szidarovszky, F.4    Uhl, V.W.5
  • 15
    • 0035450182 scopus 로고    scopus 로고
    • Multivariate reservoir inflow forecasting using temporal neural networks
    • Coulibaly, P., F. Anctil, and B. Bobee (2001), Multivariate reservoir inflow forecasting using temporal neural networks, J. Hydrol. Eng., 6, 367-376.
    • (2001) J. Hydrol. Eng. , vol.6 , pp. 367-376
    • Coulibaly, P.1    Anctil, F.2    Bobee, B.3
  • 16
    • 0028792670 scopus 로고
    • Automatic picking of seismic arrivals in local earthquake data using an artificial neural network
    • Dai, H., and C. Macbeth (1995), Automatic picking of seismic arrivals in local earthquake data using an artificial neural network, Geophys. J. Int., 120, 758-774.
    • (1995) Geophys. J. Int. , vol.120 , pp. 758-774
    • Dai, H.1    Macbeth, C.2
  • 17
    • 0023421290 scopus 로고
    • Automatic determination of lithology from well logs
    • Delfiner, P., O. Peyret, and O. Serra (1987), Automatic determination of lithology from well logs, SPE Form. Eval., 2, 303-310.
    • (1987) SPE Form. Eval. , vol.2 , pp. 303-310
    • Delfiner, P.1    Peyret, O.2    Serra, O.3
  • 18
    • 0033545029 scopus 로고    scopus 로고
    • An efficient probabilistic neural network approach to solving inverse problems: Inverting surface wave velocities for Eurasian crustal thickness
    • Devilee, R. J. R., A. Curtis, and K. Roy-Chowdhury (1999), An efficient probabilistic neural network approach to solving inverse problems: Inverting surface wave velocities for Eurasian crustal thickness, J. Geophys. Res., 104(12), 28, 841-28, 856.
    • (1999) J. Geophys. Res. , vol.104 , Issue.12 , pp. 28841-28856
    • Devilee, R.J.R.1    Curtis, A.2    Roy-Chowdhury, K.3
  • 19
    • 0025960733 scopus 로고
    • Regional seismic event classification at the NORESS array: Seismological measurements and use of trained neural network
    • Dystart, P. S., and J. J. Pulli (1990), Regional seismic event classification at the NORESS array: Seismological measurements and use of trained neural network, Bull. Seis. Soc. Am., 80, 1910-1933.
    • (1990) Bull. Seis. Soc. Am. , vol.80 , pp. 1910-1933
    • Dystart, P.S.1    Pulli, J.J.2
  • 20
    • 14344262739 scopus 로고    scopus 로고
    • The German continental deep drilling program KTB: Overview and major results
    • Emmermann, R., and J. Lauterjung (1997), The German Continental Deep Drilling Program KTB: Overview and major results, J. Geophys. Res., 102, 18179-18201.
    • (1997) J. Geophys. Res. , vol.102 , pp. 18179-18201
    • Emmermann, R.1    Lauterjung, J.2
  • 21
    • 0030922858 scopus 로고    scopus 로고
    • Neural dynamic modeling on earthquake magnitude series
    • Feng, X.-T., M. Seto, and K. Katsuyama (1997), Neural dynamic modeling on earthquake magnitude series, Geophys. J. Int., 128, 547-556.
    • (1997) Geophys. J. Int. , vol.128 , pp. 547-556
    • Feng, X.-T.1    Seto, M.2    Katsuyama, K.3
  • 22
    • 0012178066 scopus 로고
    • The geological framework of the KTB drill site
    • edited by R. Emmermann and J. Wohlenberg, Springer, Berlin
    • Franke, W. (1989), The geological framework of the KTB drill site, in The German Continental Deep Drilling Program (KTB), edited by R. Emmermann and J. Wohlenberg, pp. 38-54, Springer, Berlin.
    • (1989) The German Continental Deep Drilling Program (KTB) , pp. 38-54
    • Franke, W.1
  • 25
    • 0035394572 scopus 로고    scopus 로고
    • Porosity and permeability prediction from wireline logs using artificial neural networks: A North Sea case study
    • Helle, H. B., A. Bhatt, and B. Ursin (2001), Porosity and permeability prediction from wireline logs using artificial neural networks: A North Sea case study, Geophys. Prosp., 49, 431-444.
    • (2001) Geophys. Prosp. , vol.49 , pp. 431-444
    • Helle, H.B.1    Bhatt, A.2    Ursin, B.3
  • 26
    • 33748029144 scopus 로고    scopus 로고
    • Bayesian neural network for rainfall-runoff modeling
    • DOI 10.1029/2005WR003971
    • Khan, M. S., and P. Coulibaly (2006), Bayesian neural network for rainfallrunoff modeling, Water Resour. Res., 42, W07409, doi:10.1029/ 2005WR003971. (Pubitemid 44300476)
    • (2006) Water Resources Research , vol.42 , Issue.7
    • Khan, M.S.1    Coulibaly, P.2
  • 27
    • 0032458696 scopus 로고    scopus 로고
    • Variability of geophysical log data and signature of crustal heterogeneities at the KTB
    • Leonardi, S., and H. Kumpel (1998), Variability of geophysical log data and signature of crustal heterogeneities at the KTB, Geophys. J. Int., 135, 964-974.
    • (1998) Geophys. J. Int. , vol.135 , pp. 964-974
    • Leonardi, S.1    Kumpel, H.2
  • 28
    • 0345062127 scopus 로고    scopus 로고
    • Fractal variability in super deep borehole-implications for the signature of crustal heterogeneities
    • Leonardi, S., and H. Kumpel (1999), Fractal variability in super deep borehole-implications for the signature of crustal heterogeneities, Tectonophysics, 301, 173-181.
    • (1999) Tectonophysics , vol.301 , pp. 173-181
    • Leonardi, S.1    Kumpel, H.2
  • 29
    • 0002704818 scopus 로고
    • A practical Bayesian framework for backpropagation networks
    • MacKay, D. J. C. (1992), A practical Bayesian framework for backpropagation networks, Neural Comput., 4(3), 448-472.
    • (1992) Neural. Comput. , vol.4 , Issue.3 , pp. 448-472
    • MacKay, D.J.C.1
  • 30
    • 73649115660 scopus 로고    scopus 로고
    • A hybrid Monte Carlo method based artificial neural networks approach for rock boundaries identification: A case study from the KTB bore hole
    • doi:10.1007/s00024-009-0533-y
    • Maiti, S., and R. K. Tiwari (2009), A hybrid Monte Carlo method based artificial neural networks approach for rock boundaries identification: A case study from the KTB bore hole, Pure Appl. Geophys., 166, 2059-2090, doi:10.1007/s00024-009-0533-y.
    • (2009) Pure Appl. Geophys. , vol.166 , pp. 2059-2090
    • Maiti, S.1    Tiwari, R.K.2
  • 31
    • 84864158267 scopus 로고    scopus 로고
    • Automatic discriminations of geophysical signals using the Bayesian neural networks approach
    • doi:10.1190/1.3298501
    • Maiti, S., and R. K. Tiwari (2010), Automatic discriminations of geophysical signals using the Bayesian neural networks approach, Geophysics, 75(1), E67-E78, doi:10.1190/1.3298501.
    • (2010) Geophysics , vol.75 , Issue.1
    • Maiti, S.1    Tiwari, R.K.2
  • 32
    • 34247261168 scopus 로고    scopus 로고
    • Neural network modeling and classification of lithofacies using well log data: A case study from KTB borehole site
    • Maiti, S., R. K. Tiwari, and H. J. Kumpel (2007), Neural network modeling and classification of lithofacies using well log data: A case study from KTB borehole site, Geophys. J. Int., 169, 733-746.
    • (2007) Geophys. J. Int. , vol.169 , pp. 733-746
    • Maiti, S.1    Tiwari, R.K.2    Kumpel, H.J.3
  • 33
    • 0027334560 scopus 로고
    • First break refraction event picking and seismic data trace editing using neural networks
    • McCormack, M. D., D. Zaucha, and D. Dushek (1993), First break refraction event picking and seismic data trace editing using neural networks, Geophysics, 58, 67-78.
    • (1993) Geophysics , vol.58 , pp. 67-78
    • McCormack, M.D.1    Zaucha, D.2    Dushek, D.3
  • 34
    • 34247255581 scopus 로고    scopus 로고
    • Global crustal thickness from neural network inversion of surface wave data
    • Meier, U., A. Curtis, and J. Trampert (2007), Global crustal thickness from neural network inversion of surface wave data, Geophys. J. Int., 169, 706-722.
    • (2007) Geophys. J. Int. , vol.169 , pp. 706-722
    • Meier, U.1    Curtis, A.2    Trampert, J.3
  • 35
    • 0027205884 scopus 로고
    • A scaled conjugate gradient algorithm for fast supervised learning
    • Moller, M. (1993), A scaled conjugate gradient algorithm for fast supervised learning, Neural Networks, 6, 525-533.
    • (1993) Neural. Networks , vol.6 , pp. 525-533
    • Moller, M.1
  • 36
    • 0029481451 scopus 로고
    • Monte Carlo sampling of solutions to inverse problem
    • Mosegaard, K., and A. Tarantola (1995), Monte Carlo sampling of solutions to inverse problem, J. Geophys. Res., 100 (B7), 12, 431-12, 447.
    • (1995) J. Geophys. Res. , vol.100 , Issue.B7 , pp. 12431-12447
    • Mosegaard, K.1    Tarantola, A.2
  • 37
    • 0027071123 scopus 로고
    • Automated first arrival picking: A neural network approach
    • Murat, M. E., and A. J. Rudman (1992), Automated first arrival picking: A neural network approach, Geophys. Prosp., 40, 587-604.
    • (1992) Geophys. Prosp. , vol.40 , pp. 587-604
    • Murat, M.E.1    Rudman, A.J.2
  • 39
    • 0037591475 scopus 로고
    • Bayesian learning via stochastic dynamics
    • edited by C. L. Giles et al., Morgan Kaufmann, San Francisco, Calif
    • Neal, R. M. (1993), Bayesian learning via stochastic dynamics, in Advances in Neural Information Processing Systems, vol. 5, edited by C. L. Giles et al., pp. 475-482, Morgan Kaufmann, San Francisco, Calif.
    • (1993) Advances in Neural. Information Processing Systems , vol.5 , pp. 475-482
    • Neal, R.M.1
  • 40
    • 0031419808 scopus 로고    scopus 로고
    • Integrated interpretation in the German continental deep drilling program: Lithology, porosity, and fracture zones
    • Pechnig, P., S. Haverkamp, J. Wohlenberg, G. Zimmermann, and H. Burkhardt (1997), Integrated interpretation in the German Continental Deep Drilling Program: Lithology, porosity, and fracture zones, J. Geophys. Res., 102, 18, 363-18, 390.
    • (1997) J. Geophys. Res. , vol.102 , pp. 18363-18390
    • Pechnig, P.1    Haverkamp, S.2    Wohlenberg, J.3    Zimmermann, G.4    Burkhardt, H.5
  • 41
    • 0001417448 scopus 로고
    • Acoustic character logs and their application in formation evaluation
    • Pickett, G. R. (1963), Acoustic character logs and their application in formation evaluation, J. Petr. Tech., 15, 659-667.
    • (1963) J. Petr. Tech. , vol.15 , pp. 659-667
    • Pickett, G.R.1
  • 43
    • 0025995053 scopus 로고
    • A pattern recognition approach to geophysical inversion using neural nets
    • Raiche, A. (1991), A pattern recognition approach to geophysical inversion using neural nets, Geophys. J. Int., 105, 629-648.
    • (1991) Geophys. J. Int. , vol.105 , pp. 629-648
    • Raiche, A.1
  • 44
    • 0026450705 scopus 로고
    • Determination of lithology from well logs using a neural network
    • Rogers, S. J., J. H. Fang, C. L. Karr, and D. A. Stanley (1992), Determination of lithology from well logs using a neural network, AAPG Bull., 76(5), 731-739.
    • (1992) AAPG Bull. , vol.76 , Issue.5 , pp. 731-739
    • Rogers, S.J.1    Fang, J.H.2    Karr, C.L.3    Stanley, D.A.4
  • 45
    • 11144273669 scopus 로고
    • The perceptron: A probabilistic model for information storage and organization in the brain
    • Rosenblatt, F. (1958), The perceptron: A probabilistic model for information storage and organization in the brain, Psychol. Rev., 65, 386-408.
    • (1958) Psychol. Rev. , vol.65 , pp. 386-408
    • Rosenblatt, F.1
  • 46
    • 0028262573 scopus 로고
    • Neural networks and inversion of seismic data
    • Roth, G., and A. Tarantola (1994), Neural networks and inversion of seismic data, J. Geophys. Res., 99, 6753-6768.
    • (1994) J. Geophys. Res. , vol.99 , pp. 6753-6768
    • Roth, G.1    Tarantola, A.2
  • 47
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart, D. E., G. E. Hinton, and R. J. Williams (1986), Learning representations by back-propagating errors, Nature, 323, 533-536.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 48
    • 0036765114 scopus 로고    scopus 로고
    • Monte Carlo methods in geophysical inverse problems
    • doi:10.1029/2000RG000089
    • Sambridge, M., and K. Mosegaard (2002), Monte Carlo methods in geophysical inverse problems, Rev. Geophys., 40(3), 1009, doi:10.1029/ 2000RG000089.
    • (2002) Rev. Geophys. , vol.40 , Issue.3 , pp. 1009
    • Sambridge, M.1    Mosegaard, K.2
  • 49
    • 0029668392 scopus 로고    scopus 로고
    • Bayesian inference, Gibbs' sampler and uncertainty estimation in geophysical inversion
    • Sen, M. K., and P. Stoffa (1996), Bayesian inference, Gibbs' sampler and uncertainty estimation in geophysical inversion, Geophys. Prospect., 44, 313-350.
    • (1996) Geophys. Prospect. , vol.44 , pp. 313-350
    • Sen, M.K.1    Stoffa, P.2
  • 50
    • 0033937388 scopus 로고    scopus 로고
    • Artificial neural network inversion of Magnetotelluric data in terms of three-dimensional earth macroparameters
    • Spichak, V., and I. Popova (2000), Artificial neural network inversion of Magnetotelluric data in terms of three-dimensional earth macroparameters, Geophys. J. Int., 142, 15-26.
    • (2000) Geophys. J. Int. , vol.142 , pp. 15-26
    • Spichak, V.1    Popova, I.2
  • 52
    • 33746747003 scopus 로고    scopus 로고
    • Popper, Bayes and the inverse problem
    • Tarantola, A. (2006), Popper, Bayes and the inverse problem, Nat. Phys., 492-494.
    • (2006) Nat. Phys. , pp. 492-494
    • Tarantola, A.1
  • 53
    • 0034233231 scopus 로고    scopus 로고
    • Neural networks in geophysical applications
    • Van der Baan, M., and C. Jutten (2000), Neural networks in geophysical applications, Geophysics, 65, 1032-1047.
    • (2000) Geophysics , vol.65 , pp. 1032-1047
    • Van Der Baan, M.1    Jutten, C.2
  • 54
    • 0001905135 scopus 로고
    • On the asymptotic behaviour of posterior distributions
    • Walker, A. M. (1969), On the asymptotic behaviour of posterior distributions, J. R. Stat., 31, 80-88.
    • (1969) J. R. Stat. , vol.31 , pp. 80-88
    • Walker, A.M.1
  • 55
    • 0000673452 scopus 로고
    • Bayesian regularization and pruning using a Laplace prior
    • Williams, P. M. (1995), Bayesian regularization and pruning using a Laplace prior, Neural Comput, 7, 117-143.
    • (1995) Neural. Comput. , vol.7 , pp. 117-143
    • Williams, P.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.