메뉴 건너뛰기




Volumn 75, Issue 1, 2010, Pages

Automatic discriminations among geophysical signals via the Bayesian neural networks approach

Author keywords

[No Author keywords available]

Indexed keywords

BAYESIAN NETWORKS; COMPLEX NETWORKS; DATA HANDLING; GEOPHYSICS; INTELLIGENT SYSTEMS; MONTE CARLO METHODS; NEURAL NETWORKS; SOFTWARE TESTING; TIME SERIES; WHITE NOISE;

EID: 84864158267     PISSN: 00168033     EISSN: None     Source Type: Journal    
DOI: 10.1190/1.3298501     Document Type: Article
Times cited : (32)

References (37)
  • 1
    • 0031411798 scopus 로고    scopus 로고
    • Petrophysical properties of the 9-km deep crustal selection at KTB
    • Petrophysical properties of the deep crustal selection at KTB: Petrophysical properties of the deep crustal selection at KTB, jgr JGREA2, 0148-0227, 10.1029/96JB03396
    • Berckhemer, H. Rauen, A. Winter, H. Kern, H. Kontny, A. Lienert, M. Nover, G. Pohl, J. Popp, T. Schult, A. Zinke, J. Soffel, H.C., 1997, Petrophysical properties of the 9-km deep crustal selection at KTB: Journal of Geophysical Research, 102, B8, 18337-18361.jgr, JGREA2, 0148-0227, 10.1029/96JB03396
    • (1997) Journal of Geophysical Research , vol.102 , Issue.B8 , pp. 18337-18361
    • Berckhemer, H.1    Rauen, A.2    Winter, H.3    Kern, H.4    Kontny, A.5    Lienert, M.6    Nover, G.7    Pohl, J.8    Popp, T.9    Schult, A.10    Zinke, J.11    Soffel, H.C.12
  • 2
    • 84867152799 scopus 로고
    • Neural networks for pattern recognition: Oxford University Press
    • Bishop, C.M., 1995, Neural networks for pattern recognition: Oxford University Press.
    • (1995)
    • Bishop, C.M.1
  • 4
    • 0024861871 scopus 로고
    • Approximation by superpositions of sigmoidal function
    • afm ZZZZZZ, 0932-4194, 10.1007/BF02551274
    • Cybenko, G., 1989, Approximation by superpositions of sigmoidal function: Mathematics Control and Signals Systems, 2, 303-314.afm, ZZZZZZ, 0932-4194, 10.1007/BF02551274
    • (1989) Mathematics Control and Signals Systems , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 6
    • 0033545029 scopus 로고    scopus 로고
    • An efficient probabilistic neural network approach to solving inverse problems: Inverting surface wave velocities for Eurasian crustal thickness
    • jgr JGREA2, 0148-0227, 10.1029/1999JB900273
    • Devilee, R.J.R. Curtis, A. Roy-Chowdhury, K., 1999, An efficient probabilistic neural network approach to solving inverse problems: Inverting surface wave velocities for Eurasian crustal thickness: Journal of Geophysical Research, 104, 28841-28856.jgr, JGREA2, 0148-0227, 10.1029/1999JB900273
    • (1999) Journal of Geophysical Research , vol.104 , pp. 28841-28856
    • Devilee, R.J.R.1    Curtis, A.2    Roy-Chowdhury, K.3
  • 7
    • 4243137056 scopus 로고
    • Hybrid Monte Carlo
    • plb PYLBAJ, 0370-2693, 10.1016/0370-2693(87)91197-X
    • Duane, S. Kennedy, A.D. Pendleton, B. Roweth, D., 1987, Hybrid Monte Carlo: Physics Letters B, 195, 216-222.plb, PYLBAJ, 0370-2693, 10.1016/0370-2693(87)91197-X
    • (1987) Physics Letters B , vol.195 , pp. 216-222
    • Duane, S.1    Kennedy, A.D.2    Pendleton, B.3    Roweth, D.4
  • 8
    • 14344262739 scopus 로고    scopus 로고
    • The German Continental Deep Drilling Program KTB: Overview and major results
    • jgr JGREA2, 0148-0227, 10.1029/96JB03945
    • Emmermann, R. Lauterjung, J., 1997, The German Continental Deep Drilling Program KTB: Overview and major results: Journal of Geophysical Research, 102, 18179-18201.jgr, JGREA2, 0148-0227, 10.1029/96JB03945
    • (1997) Journal of Geophysical Research , vol.102 , pp. 18179-18201
    • Emmermann, R.1    Lauterjung, J.2
  • 9
    • 0012178066 scopus 로고
    • The geological framework of the KTB drill site and eds The German Continental Deep Drilling Program (KTB): Springer-Verlag Berlin
    • Franke, W., 1989, The geological framework of the KTB drill site, , in R. Emmermann and J. Wohlenberg, eds., The German Continental Deep Drilling Program (KTB): Springer-Verlag Berlin, 38-54.
    • (1989) , pp. 38-54
    • Franke, W.1
  • 10
    • 84867157352 scopus 로고
    • Introduction to the statistical time series: John Wiley & Sons, Inc.
    • Fuller, W.A., 1976, Introduction to the statistical time series: John Wiley & Sons, Inc.
    • (1976)
    • Fuller, W.A.1
  • 12
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markov chain and their applications
    • bik BIOKAX, 0006-3444, 10.1093/biomet/57.1.97
    • Hastings, W.K., 1970, Monte Carlo sampling methods using Markov chain and their applications: Biometrika, 57, 97-109.bik, BIOKAX, 0006-3444, 10.1093/biomet/57.1.97
    • (1970) Biometrika , vol.57 , pp. 97-109
    • Hastings, W.K.1
  • 13
    • 33748029144 scopus 로고    scopus 로고
    • Bayesian neural network for rainfall-runoff modeling
    • wre WRERAQ, 0043-1397, 10.1029/2005WR003971
    • Khan, M.S. Coulibaly, P., 2006, Bayesian neural network for rainfall-runoff modeling: Water Resources Research, 42, W07409.wre, WRERAQ, 0043-1397, 10.1029/2005WR003971
    • (2006) Water Resources Research , vol.42
    • Khan, M.S.1    Coulibaly, P.2
  • 14
    • 0035312886 scopus 로고    scopus 로고
    • Bayesian approach for neural networks-review and case studies
    • nne NNETEB, 0893-6080, 10.1016/S0893-6080(00)00098-8
    • Lampinen, J. Vehtari, A., 2001, Bayesian approach for neural networks-review and case studies: Neural Networks, 14, 7-24.nne, NNETEB, 0893-6080, 10.1016/S0893-6080(00)00098-8
    • (2001) Neural Networks , vol.14 , pp. 7-24
    • Lampinen, J.1    Vehtari, A.2
  • 15
    • 0032458696 scopus 로고    scopus 로고
    • Variability of geophysical log data and signature of crustal heterogeneities at the KTB
    • gji GJINEA, 0956-540X, 10.1046/j.1365-246X.1998.00714.x
    • Leonardi, S. Kumpel, H., 1998, Variability of geophysical log data and signature of crustal heterogeneities at the KTB: Geophysical Journal International, 135, 964-974.gji, GJINEA, 0956-540X, 10.1046/j.1365-246X.1998.00714.x
    • (1998) Geophysical Journal International , vol.135 , pp. 964-974
    • Leonardi, S.1    Kumpel, H.2
  • 16
    • 0345062127 scopus 로고    scopus 로고
    • Fractal variability in super deep borehole-implications for the signature of crustal heterogeneities
    • 1999, Fractal variability in super deep borehole-implications for the signature of crustal heterogeneities: Tectonophysics, 301, 173-181.8t9, TCTOAM, 0040-1951, 10.1016/S0040-1951(98)00212-1
    • (1999) Tectonophysics , vol.301 , pp. 173-181
  • 17
    • 0002704818 scopus 로고
    • A practical Bayesian framework for back-propagation networks
    • nrc NEUCEB, 0899-7667, 10.1162/neco.1992.4.3.448
    • MacKay, D.J.C., 1992, A practical Bayesian framework for back-propagation networks: Neural Computation, 4, 448-472.nrc, NEUCEB, 0899-7667, 10.1162/neco.1992.4.3.448
    • (1992) Neural Computation , vol.4 , pp. 448-472
    • MacKay, D.J.C.1
  • 18
    • 22644441841 scopus 로고    scopus 로고
    • An automatic method for detecting litholog boundary using Walsh transform, A case study from KTB borehole
    • cgo CGEODT, 0098-3004, 10.1016/j.cageo.2005.01.016
    • Maiti, S. Tiwari, R.K., 2005, An automatic method for detecting litholog boundary using Walsh transform, A case study from KTB borehole: Computers and Geosciences, 31, 949-955.cgo, CGEODT, 0098-3004, 10.1016/j.cageo.2005.01.016
    • (2005) Computers and Geosciences , vol.31 , pp. 949-955
    • Maiti, S.1    Tiwari, R.K.2
  • 19
    • 73649115660 scopus 로고    scopus 로고
    • A hybrid Monte Carlo method based artificial neural networks approach for rock boundaries identification: A case study from KTB borehole
    • 2009, A hybrid Monte Carlo method based artificial neural networks approach for rock boundaries identification: A case study from KTB borehole: Pure and Applied Geophysics, 166, 2059-2090.pae, PAGYAV, 0033-4553, 10.1007/s00024-009-0533-y
    • (2009) Pure and Applied Geophysics , vol.166 , pp. 2059-2090
  • 20
    • 34247261168 scopus 로고    scopus 로고
    • Neural network modeling and classification of lithofacies using well log data: A case study from KTB borehole site
    • gji GJINEA, 0956-540X, 10.1111/j.1365-246X.2007.03342.x
    • Maiti, S. Tiwari, R.K. Kumpel, H.J., 2007, Neural network modeling and classification of lithofacies using well log data: A case study from KTB borehole site: Geophysical Journal International, 169, 733-746.gji, GJINEA, 0956-540X, 10.1111/j.1365-246X.2007.03342.x
    • (2007) Geophysical Journal International , vol.169 , pp. 733-746
    • Maiti, S.1    Tiwari, R.K.2    Kumpel, H.J.3
  • 21
    • 0017185443 scopus 로고
    • Simple mathematical models with very complicated dynamics
    • nat NATUAS, 0028-0836, 10.1038/261459a0
    • May, R., 1976, Simple mathematical models with very complicated dynamics: Nature, 261, 459-467.nat, NATUAS, 0028-0836, 10.1038/261459a0
    • (1976) Nature , vol.261 , pp. 459-467
    • May, R.1
  • 22
    • 34247255581 scopus 로고    scopus 로고
    • Global crustal thickness from neural network inversion of surface wave data
    • gji GJINEA, 0956-540X, 10.1111/j.1365-246X.2007.03373.x
    • Meier, U. Curtis, A. Trampert, J., 2007, Global crustal thickness from neural network inversion of surface wave data: Geophysical Journal International, 169, 706-722.gji, GJINEA, 0956-540X, 10.1111/j.1365-246X.2007.03373.x
    • (2007) Geophysical Journal International , vol.169 , pp. 706-722
    • Meier, U.1    Curtis, A.2    Trampert, J.3
  • 24
    • 84867175423 scopus 로고    scopus 로고
    • Netlab algorithms for pattern recognition: Springer-Verlag New York
    • Nabney, I.T., 2004, Netlab algorithms for pattern recognition: Springer-Verlag New York.
    • (2004)
    • Nabney, I.T.1
  • 25
    • 84867152800 scopus 로고    scopus 로고
    • Bayesian learning for neural networks: Springer-Verlag New York
    • Neal, R.M., 1996, Bayesian learning for neural networks: Springer-Verlag New York.
    • (1996)
    • Neal, R.M.1
  • 26
    • 0031411174 scopus 로고    scopus 로고
    • Crustal evolution of the KTB drill site: From the oldest relics to the late Hercynian granites
    • jgr JGREA2, 0148-0227, 10.1029/96JB03397
    • O'Brien, P. Duyster, J. Grauert, G. Schreyer, W. Stockhert, B. Weber, K., 1997, Crustal evolution of the KTB drill site: From the oldest relics to the late Hercynian granites: Journal of Geophysical Research, 102, B8, 18203-18220.jgr, JGREA2, 0148-0227, 10.1029/96JB03397
    • (1997) Journal of Geophysical Research , vol.102 , Issue.B8 , pp. 18203-18220
    • O'Brien, P.1    Duyster, J.2    Grauert, G.3    Schreyer, W.4    Stockhert, B.5    Weber, K.6
  • 27
    • 0031419808 scopus 로고    scopus 로고
    • Integrated interpretation in the German Continental Deep Drilling Program: Lithology, porosity, and fracture zones
    • jgr JGREA2, 0148-0227, 10.1029/96JB03802
    • Pechnig, P. Haverkamp, S. Wohlenberg, J. Zimmermann, G. Burkhardt, H., 1997, Integrated interpretation in the German Continental Deep Drilling Program: Lithology, porosity, and fracture zones: Journal of Geophysical Research, 102, 18363-18390.jgr, JGREA2, 0148-0227, 10.1029/96JB03802
    • (1997) Journal of Geophysical Research , vol.102 , pp. 18363-18390
    • Pechnig, P.1    Haverkamp, S.2    Wohlenberg, J.3    Zimmermann, G.4    Burkhardt, H.5
  • 28
    • 0001417448 scopus 로고
    • Acoustic character logs and their application in formation evaluation
    • jxl JPTCAZ, 0022-3522, 10.2118/452-PA
    • Pickett, G.R., 1963, Acoustic character logs and their application in formation evaluation: Journal of Petroleum Technology, 15, 659-667.jxl, JPTCAZ, 0022-3522, 10.2118/452-PA
    • (1963) Journal of Petroleum Technology , vol.15 , pp. 659-667
    • Pickett, G.R.1
  • 29
    • 84867157351 scopus 로고    scopus 로고
    • ed Computational neural networks for geophysical data processing: Pergamon Press
    • M. Poulton, ed., 2001, Computational neural networks for geophysical data processing: Pergamon Press.
    • (2001)
  • 30
    • 41249088095 scopus 로고    scopus 로고
    • Non-linear Bayesian joint inversion of seismic reflection coefficients
    • gji GJINEA, 0956-540X, 10.1111/j.1365-246X.2007.03710.x
    • Rabben, T.E. Tjelmeland, H. Ursin, B., 2008, Non-linear Bayesian joint inversion of seismic reflection coefficients: Geophysical Journal International, 173, 265-280.gji, GJINEA, 0956-540X, 10.1111/j.1365-246X.2007.03710.x
    • (2008) Geophysical Journal International , vol.173 , pp. 265-280
    • Rabben, T.E.1    Tjelmeland, H.2    Ursin, B.3
  • 31
    • 0025995053 scopus 로고
    • A pattern recognition approach to geophysical inversion using neural nets
    • gji GJINEA, 0956-540X, 10.1111/j.1365-246X.1991.tb00801.x
    • Raiche, A., 1991, A pattern recognition approach to geophysical inversion using neural nets: Geophysical Journal International, 105, 629-648.gji, GJINEA, 0956-540X, 10.1111/j.1365-246X.1991.tb00801.x
    • (1991) Geophysical Journal International , vol.105 , pp. 629-648
    • Raiche, A.1
  • 32
    • 0026450705 scopus 로고
    • Determination of lithology from well logs using a neural network
    • 9dq AABUD2, 0149-1423
    • Rogers, S.J. Fang, J.H. Karr, C.L. Stanley, D.A., 1992, Determination of lithology from well logs using a neural network: AAPG Bulletin, 76, 731-739.9dq, AABUD2, 0149-1423
    • (1992) AAPG Bulletin , vol.76 , pp. 731-739
    • Rogers, S.J.1    Fang, J.H.2    Karr, C.L.3    Stanley, D.A.4
  • 33
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • nat NATUAS, 0028-0836, 10.1038/323533a0
    • Rumelhart, D.E. Hinton, G.E. Williams, R.J., 1986, Learning representations by back-propagating errors: Nature, 323, 533-536.nat, NATUAS, 0028-0836, 10.1038/323533a0
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 34
    • 0036765114 scopus 로고    scopus 로고
    • Monte Carlo methods in geophysical inverse problems
    • rgp REGEEP, 8755-1209, 10.1029/2000RG000089
    • Sambridge, M. Mosegaard, K., 2002, Monte Carlo methods in geophysical inverse problems: Reviews of Geophysics, 40, no. 3, 1-29.rgp, REGEEP, 8755-1209, 10.1029/2000RG000089
    • (2002) Reviews of Geophysics , vol.40 , Issue.3 , pp. 1-29
    • Sambridge, M.1    Mosegaard, K.2
  • 35
    • 85040870662 scopus 로고
    • Inverse problem theory: Elsevier
    • Tarantola, A., 1987, Inverse problem theory: Elsevier.
    • (1987)
    • Tarantola, A.1
  • 36
    • 0034233231 scopus 로고    scopus 로고
    • Neural networks in geophysical applications
    • gpy GPYSA7, 0016-8033, 10.1190/1.1444797
    • van der Bann, M. Jutten, C., 2000, Neural networks in geophysical applications: Geophysics, 65, 1032-1047.gpy, GPYSA7, 0016-8033, 10.1190/1.1444797
    • (2000) Geophysics , vol.65 , pp. 1032-1047
    • van der Bann, M.1    Jutten, C.2
  • 37
    • 84944380303 scopus 로고
    • FACIOLOG: Automatic electrofacies determination
    • 23rd Annual Symposium Society of Petrophysicists and Well Log Analysts, Paper FF
    • Wolff, M. Pelissier-Combescure, J., 1982, FACIOLOG: Automatic electrofacies determination: 23rd Annual Symposium, Society of Petrophysicists and Well Log Analysts, Paper FF.
    • (1982)
    • Wolff, M.1    Pelissier-Combescure, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.