메뉴 건너뛰기




Volumn 166, Issue 12, 2009, Pages 2059-2090

A hybrid monte carlo method based artificial neural networks approach for rock boundaries identification: A case study from the KTB bore hole

Author keywords

And uncertainty analysis; Hybrid Monte Carlo (HMC); KTB boreholes; Lithofacies; Petrophysics; Well log

Indexed keywords

ALGORITHM; ARTIFICIAL NEURAL NETWORK; BAYESIAN ANALYSIS; DATA INVERSION; DEEP DRILLING; KTB BOREHOLE; LITHOFACIES; MARKOV CHAIN; MODELING; MONTE CARLO ANALYSIS; UNCERTAINTY ANALYSIS; WELL LOGGING;

EID: 73649115660     PISSN: 00334553     EISSN: 14209136     Source Type: Journal    
DOI: 10.1007/s00024-009-0533-y     Document Type: Article
Times cited : (34)

References (25)
  • 3
    • 84981758808 scopus 로고
    • Numerical applications of formalism for geophysical inverse problems, Geophys
    • BACKUS, G.E. and GILBERT, J.F. (1967), Numerical applications of formalism for geophysical inverse problems, Geophys. J. R. Astron. Soc., 13, 247-276.
    • (1967) J. R. Astron. Soc. , vol.13
    • Backus, G.E.1    Gilbert, J.F.2
  • 5
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markov Chain and their applications
    • HASTINGS, W.K. (1970), Monte Carlo sampling methods using Markov Chain and their applications, Biometrika 57, 97-109.
    • (1970) Biometrika , vol.57
    • Hastings, W.K.1
  • 8
    • 14344262739 scopus 로고    scopus 로고
    • The german continental deep drilling program KTB: Overview and major results
    • EMMERMANN, R. and LAUTERJUNG, J. (1997), The German Continental Deep Drilling Program KTB: Overview and major results, J. Geophys. Res. 102, 18179-18201.
    • (1997) J. Geophys. Res. , vol.102
    • Emmermann, R.1    Lauterjung, J.2
  • 9
    • 73649089492 scopus 로고
    • Emmermann, R., Wohlenberg, J., Eds. The German Continental Deep Drilling Program (KTB). (Springer, Berlin, 1989)
    • FRANKE, W. (1989), The geological framework of the KTB drill site. In Emmermann, R., Wohlenberg, J., (Eds.), The German Continental Deep Drilling Program (KTB). (Springer, Berlin, 1989) pp. 38-54.
    • (1989) The Geological Framework of the KTB Drill Site.
    • Franke, W.1
  • 11
    • 33748029144 scopus 로고    scopus 로고
    • Bayesian neural network for rainfall-runoff modeling
    • doi: 10.1029/2005WR003971.
    • KHAN, M.S. and COULIBALY, P. (2006), Bayesian neural network for rainfall-runoff modeling, Water Resour. Res. 42, W07409, doi: 10.1029/2005WR003971.
    • (2006) Water Resour. Res. , vol.42
    • Khan, M.S.1    Coulibaly, P.2
  • 13
    • 0032458696 scopus 로고    scopus 로고
    • Variability of geophysical log data and signature of crustal heterogeneities at the KTB
    • LEONARDI, S. and KUMPEL, H. (1998), Variability of geophysical log data and signature of crustal heterogeneities at the KTB, Geophys. J. Int. 135, 964-974.
    • (1998) Geophys. J. Int. , vol.135
    • Leonardi, S.1    Kumpel, H.2
  • 14
    • 0345062127 scopus 로고    scopus 로고
    • Fractal variability in super deep borehole-implications for the signature of crustal heterogeneities
    • LEONARDI, S. and KUMPEL, H. (1999), Fractal variability in super deep borehole-implications for the signature of crustal heterogeneities, Tectonophysics 301, 173-181.
    • (1999) Tectonophysics , vol.301
    • Leonardi, S.1    Kumpel, H.2
  • 15
    • 0002704818 scopus 로고
    • A practical Bayesian framework for back-propagation networks
    • MACKAY, D.J.C. (1992), A practical Bayesian framework for back-propagation networks, Neural Comput. 4(3), 448-472.
    • (1992) Neural Comput. , vol.4 , Issue.3
    • Mackay, D.J.C.1
  • 17
    • 34247261168 scopus 로고    scopus 로고
    • Neural network modeling and classification of lithofacies using well log data: A case study from KTB borehole site
    • MAITI, S., TIWARI, R.K., and KUMPEL, H.J., (2007), Neural network modeling and classification of lithofacies using well log data: a case study from KTB borehole site, Geophys. J. Int. 169, 733-746.
    • (2007) Geophys. J. Int. , vol.169
    • Maiti, S.1    Tiwari, R.K.2    Kumpel, H.J.3
  • 19
    • 0029481451 scopus 로고
    • Monte Carlo sampling of solutions to inverse problem
    • MOSEGAARD, K. and TARANTOLA, A., (1995), Monte Carlo sampling of solutions to inverse problem, Jr. Geophys. Res. 100, B7, 12,431-12,447.
    • (1995) Jr. Geophys. Res. , vol.100 , Issue.B7
    • Mosegaard, K.1    Tarantola, A.2
  • 21
    • 0037591475 scopus 로고
    • Bayesian learning via stochastic dynamics
    • eds C.L.Giles et al. Elsevier, New York
    • NEAL, R.M, Bayesian learning via stochastic dynamics. In Advances in Neural Information Processing Systems 5, (eds) C.L.Giles et al.), pp 475-482, (Elsevier, New York 1993).
    • (1993) Advances in Neural Information Processing Systems , vol.5
    • Neal, R.M.1
  • 22
    • 0031419808 scopus 로고    scopus 로고
    • Integrated interpretation in the German Continental Deep Drilling Program: Lithology, porosity, and fracture zones
    • PECHNIG, P., HAVERKAMP, S., WOHLENBERG, J., ZIMMERMANN, G., and BURKHARDT, H., (1997), Integrated interpretation in the German Continental Deep Drilling Program: Lithology, porosity, and fracture zones. J. Geophys. Res., 102, 18363-18390.
    • (1997) J. Geophys. Res. , vol.102
    • Pechnig, P.1    Haverkamp, S.2    Wohlenberg, J.3    Zimmermann, G.4    Burkhardt, H.5
  • 24
    • 0036765114 scopus 로고    scopus 로고
    • Monte Carlo methods in geophysical inverse problems
    • SAMBRIDGE, M. and MOSEGAARD, K. (2002), Monte Carlo methods in geophysical inverse problems, Rev. Geophys., 40, 3, 1-29.
    • (2002) Rev. Geophys. , vol.40 , Issue.3
    • Sambridge, M.1    Mosegaard, K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.